
Full Stack Deep Learning

Josh Tobin, Sergey Karayev, Pieter Abbeel

Troubleshooting Deep Neural Networks

Modified by Jiayuan Gu

See full videos and more information from
https://course.fullstackdeeplearning.com/course-content/training-and-debugging

Full Stack Deep Learning

Lifecycle of a ML project

Planning &
project setup

Data collection
& labeling

Training &
debugging

Deploying &
testing

Team & hiring

Per-project
activities

Infra &
tooling

Troubleshooting - overview 3

Cross-project
infrastructure

Full Stack Deep Learning

Why talk about DL troubleshooting?

Troubleshooting - overview 4

Full Stack Deep Learning

Why talk about DL troubleshooting?

Troubleshooting - overview 5

Common sentiment among practitioners:

80-90% of time debugging and tuning

10-20% deriving math or implementing things

Full Stack Deep Learning

Why is DL troubleshooting so hard?

Troubleshooting - overview 6

Full Stack Deep Learning

Suppose you can’t reproduce a result

He, Kaiming, et al. "Deep residual learning for image recognition."

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Your learning curve

Troubleshooting - overview 7

Full Stack Deep Learning

Why is your performance worse?

Poor model
performance

Troubleshooting - overview 8

Full Stack Deep Learning

Why is your performance worse?

Implementation
bugs

Troubleshooting - overview 9

Poor model
performance

Full Stack Deep Learning

Most DL bugs are invisible

Troubleshooting - overview 10

Full Stack Deep Learning

Most DL bugs are invisible

Troubleshooting - overview 11

Labels out of order!

Full Stack Deep Learning

Another example

Troubleshooting - overview 12

Model performs poorly
after the first epoch.

Full Stack Deep Learning

Another example

Troubleshooting - overview 13

CAUATION: In-place
operation!

Full Stack Deep Learning

Why is your performance worse?

Poor model
performance

Implementation
bugs

Hyperparameter
choices

Troubleshooting - overview 14

Full Stack Deep Learning

Models are sensitive to hyperparameters

Andrej Karpathy, CS231n course notes

Troubleshooting - overview 15

Full Stack Deep Learning

Andrej Karpathy, CS231n course notes He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." Proceedings of the IEEE international conference on computer vision. 2015.

Troubleshooting - overview 16

Models are sensitive to hyperparameters

Full Stack Deep Learning

Why is your performance worse?

Implementation
bugs

Hyperparameter
choices

Troubleshooting - overview 17

Data/model fit

Poor model
performance

Full Stack Deep Learning

Data / model fit

Data from the paper: ImageNet Yours: self-driving car images

Troubleshooting - overview 18

Full Stack Deep Learning

Why is your performance worse?

Dataset
constructionData/model fit

Poor model
performance

Implementation
bugs

Hyperparameter
choices

Troubleshooting - overview 19

Full Stack Deep Learning

Constructing good datasets is hard

Amount of lost sleep over...

PhD Tesla

Slide from Andrej Karpathy’s talk “Building the Software 2.0 Stack” at TrainAI 2018, 5/10/2018

Troubleshooting - overview 20

Full Stack Deep Learning

Common dataset construction issues

Troubleshooting - overview 21

• Not enough data

• Class imbalances

• Noisy labels

• Train / test from different distributions

• etc

Full Stack Deep Learning

Takeaways: why is troubleshooting hard?

Troubleshooting - overview 22

• Hard to tell if you have a bug

• Lots of possible sources for the same degradation in
performance

• Results can be sensitive to small changes in
hyperparameters and dataset makeup

Full Stack Deep Learning

Strategy for DL troubleshooting

Troubleshooting - overview 23

Full Stack Deep Learning

Key mindset for DL troubleshooting

Troubleshooting - overview 24

Pessimism

Full Stack Deep Learning

Key idea of DL troubleshooting

Troubleshooting - overview 25

…Start simple and gradually
ramp up complexity

Since it’s hard to
disambiguate errors…

Full Stack Deep Learning

Strategy for DL troubleshooting

Tune hyper-
parameters

Implement
& debugStart simple Evaluate

Improve
model/data

Meets re-
quirements

Troubleshooting - overview 26

Full Stack Deep Learning

Quick summary

Start
simple

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 27

Full Stack Deep Learning

Quick summary

Implement
& debug

Start
simple

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 28

• Once model runs, overfit a single batch &
reproduce a known result

Full Stack Deep Learning

Quick summary

Implement
& debug

Start
simple

Evaluate

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 29

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

Full Stack Deep Learning

Quick summary

Tune hyp-
eparams

Implement
& debug

Start
simple

Evaluate

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 30

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

• Use coarse-to-fine random searches

Full Stack Deep Learning

Tune hyp-
eparams

Quick summary

Implement
& debug

Start
simple

Evaluate

Improve
model/data

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 31

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add
data or regularize if you overfit

Full Stack Deep Learning

We’ll assume you already have…

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - overview 32

•

•

Initial test set

A single metric to improve

• Target performance based on human-level
performance, published results, previous
baselines, etc

Full Stack Deep Learning

Questions?

Troubleshooting - overview 33

Full Stack Deep Learning

Tune hyper-
parameters

Implement
& debugStart simple Evaluate

Improve
model/data

Meets re-
quirements

Strategy for DL troubleshooting

Troubleshooting - start simple 34

Full Stack Deep Learning

Starting simple

Normalize inputs

Choose a simple
architecture

b Use sensible defaults

Steps

a

c

d Simplify the problem

Troubleshooting - start simple 35

Full Stack Deep Learning

Demystifying architecture selection

Start here Consider using this later

Images

Troubleshooting - start simple 36

LeNet-like architecture

LSTM with one hidden
layer (or temporal convs)

Fully connected neural net
with one hidden layer

ResNet

Attention model or
WaveNet-like model

Problem-dependent

Images

Sequences

Other

Full Stack Deep Learning

Example: Object Detection

Troubleshooting - overview 37

Usually start from ResNet50-C5 to verify the idea
Finally turn to ResNet101-FPN for the best performance

Full Stack Deep Learning

Starting simple

Normalize inputs

Choose a simple
architecture

b Use sensible defaults

Steps

a

c

d Simplify the problem

Troubleshooting - start simple 38

Full Stack Deep Learning

Recommended network / optimizer defaults

Troubleshooting - start simple 39

• Optimizer: Adam optimizer with learning rate 3e-4

• Activations: relu (FC and Conv models), tanh (LSTMs)

• Initialization: He et al. normal (relu),	 Glorot normal (tanh)

• Regularization: None

• Data normalization: None

Full Stack Deep Learning

Normalize inputs

Starting simple

Choose a simple
architecture

b Use sensible defaults

a

c

Steps

d Simplify the problem

Troubleshooting - start simple 40

Full Stack Deep Learning

Important to normalize scale of input data

Troubleshooting - start simple 41

• Subtract mean and divide by variance

• For images, fine to scale values to [0, 1] or [-0.5, 0.5]
(e.g., by dividing by 255)

[Careful, make sure your library doesn’t do it for you!]

• For point clouds (at least synthetic data), normalize to
a unit sphere or cube

Full Stack Deep Learning

Normalize inputs

Starting simple

Choose a simple
architecture

b Use sensible defaults

a

c

Steps

d Simplify the problem

Troubleshooting - start simple 42

Full Stack Deep Learning

Consider simplifying the problem as well

Troubleshooting - start simple 43

• Start with a small training set (~10,000 examples)

• Use a fixed number of objects, classes, image size, etc.

• Create a simpler synthetic training set

Full Stack Deep Learning

Simplest model for pedestrian detection

• Start with a subset of 10,000 images for training, 1,000 for val, and 500
for test

Use a LeNet architecture with sigmoid cross-entropy loss

Adam optimizer with LR 3e-4

•

•

• No regularization

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - start simple 44

Full Stack Deep Learning

Normalize inputs

Starting simple

Choose a simple
architecture

b Use sensible defaults

a

c

Steps Summary

d Simplify the problem
•

Troubleshooting - start simple 45

Start with a simpler
version of your problem
(e.g., smaller dataset)

• Adam optimizer & no
regularization

• Subtract mean and divide
by std, or just divide by
255 (ims)

• LeNet, LSTM, or fully
connected

Full Stack Deep Learning

Questions?

Troubleshooting - start simple 46

Full Stack Deep Learning

Tune hyper-
parameters

Implement
& debugStart simple Evaluate

Improve
model/data

Meets re-
quirements

Strategy for DL troubleshooting

Troubleshooting - debug 47

Full Stack Deep Learning

Implementing bug-free DL models

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

Troubleshooting - debug 48

Full Stack Deep Learning

Preview: the five most common DL bugs

Troubleshooting - debug 49

• Incorrect shapes for your tensors
Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape =
(None, 1), (x+y).shape = (None, None)

• Pre-processing inputs incorrectly
E.g., Forgetting to normalize, or too much pre-processing

• Incorrect input to your loss function
E.g., softmaxed outputs to a loss that expects logits

• Forgot to set up train mode for the net correctly
E.g., toggling train/eval, controlling batch norm dependencies

• Numerical instability - inf/NaN
Often stems from using an exp, log, or div operation

Full Stack Deep Learning

Example

Troubleshooting - overview 50

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py

Full Stack Deep Learning

Example

Troubleshooting - overview 51

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py

box[…, -1]: […, N]
tf.atan2(…): […]

Full Stack Deep Learning

General advice for implementing your model

Troubleshooting - debug 52

Use off-the-shelf components, e.g.,

•

•

Keras

tf.layers.dense(…)
instead of

tf.nn.relu(tf.matmul(W, x))

• tf.losses.cross_entropy(…)
instead of writing out the exp

Lightweight implementation

• Minimum possible new lines of
code for v1

• Rule of thumb: <200 lines

• (Tested infrastructure
components are fine)

Build complicated data pipelines later

• Start with a dataset you can load into
memory

Full Stack Deep Learning

Implementing bug-free DL models

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

Troubleshooting - debug 53

Full Stack Deep Learning

Get your model to
runa

Shape
mismatch

OOM

Other

Common
issues Recommended resolution

Scale back memory intensive
operations one-by-one

Standard debugging toolkit (Stack
Overflow + interactive debugger)

Step through model creation and
inference in a debugger

Casting
issue

Troubleshooting - debug 54

Implementing bug-free DL models

Full Stack Deep Learning

Debuggers for DL code
•

•

Pytorch: easy, use ipdb

tensorflow: trickier

Option 1: step through graph creation

Troubleshooting - debug 55

Full Stack Deep Learning

Debuggers for DL code

•

•

Pytorch: easy, use ipdb

tensorflow: trickier

Option 2: step into training loop

Evaluate tensors using sess.run(…)

Troubleshooting - debug 56

Full Stack Deep Learning

Debuggers for DL code

•

•

Pytorch: easy, use ipdb

tensorflow: trickier

Option 3: use tfdb

Stops
execution at
each
sess.run(…)
and lets you
inspect

python -m tensorflow.python.debug.examples.debug_mnist --debug

Troubleshooting - debug 57

Full Stack Deep Learning

Get your model to
runa

Shape
mismatch

OOM

Other

Common
issues Recommended resolution

Scale back memory intensive
operations one-by-one

Standard debugging toolkit (Stack
Overflow + interactive debugger)

Step through model creation and
inference in a debugger

Casting
issue

Troubleshooting - debug 58

Implementing bug-free DL models

Full Stack Deep Learning

Shape
mismatch Undefined

shapes

Incorrect
shapes

Common
issues Most common causes

•
•

Troubleshooting - debug 59

Flipped dimensions when using tf.reshape(…)
Took sum, average, or softmax over wrong
dimension
Forgot to flatten after conv layers
Forgot to get rid of extra “1” dimensions (e.g., if
shape is (None, 1, 1, 4)
Data stored on disk in a different dtype than
loaded (e.g., stored a float64 numpy array, and
loaded it as a float32)

•
•

•

Implementing bug-free DL models

• Confusing tensor.shape, tf.shape(tensor),
tensor.get_shape()

• Reshaping things to a shape of type Tensor (e.g.,
when loading data from a file)

Full Stack Deep Learning

Casting issue
Data not in

float32

Common
issues Most common causes

Implementing bug-free DL models

Troubleshooting - debug 60

•
•

Forgot to cast images from uint8 to float32
Generated data using numpy in float64, forgot to
cast to float32

Full Stack Deep Learning

OOM
Too big a

tensor

Too much
data

Common
issues Most common causes

Duplicating
operations

Other
processes

•

Troubleshooting - debug 61

•

•
•

• Loading too large a dataset into memory, rather
than using an input queue
Allocating too large a buffer for dataset creation

Memory leak due to creating multiple models in
the same session
Repeatedly creating an operation (e.g., in a
function that gets called over and over again)
Other processes running on your GPU

• Too large a batch size for your model (e.g.,
during evaluation)

• Too large fully connected layers

Implementing bug-free DL models

Full Stack Deep Learning

Other common
errors Other bugs

Common
issues Most common causes

Implementing bug-free DL models

Troubleshooting - debug 62

•
•
•

Forgot to initialize variables
Forgot to turn off bias when using batch norm
“Fetch argument has invalid type” - usually you
overwrote one of your ops with an output during
training

Full Stack Deep Learning

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

Implementing bug-free DL models

Troubleshooting - debug 63

Full Stack Deep Learning

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

Implementing bug-free DL models

Troubleshooting - debug 64

Full Stack Deep Learning

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

Implementing bug-free DL models

Troubleshooting - debug 65

•
•
•

Flipped the sign of the loss function / gradient
Learning rate too high

Softmax taken over wrong dimension

Full Stack Deep Learning

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

•
•

Numerical issue. Check all exp, log, and div operations
Learning rate too high

Implementing bug-free DL models

Troubleshooting - debug 66

Full Stack Deep Learning

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• Data or labels corrupted (e.g., zeroed, incorrectly
shuffled, or preprocessed incorrectly)
Learning rate too high•

Implementing bug-free DL models

Troubleshooting - debug 67

Full Stack Deep Learning

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

•
•
•
•

Learning rate too low
Gradients not flowing through the whole model
Too much regularization

Incorrect input to loss function (e.g., softmax instead of
logits, accidentally add ReLU on output)
Data or labels corrupted•

Implementing bug-free DL models

Troubleshooting - debug 68

Full Stack Deep Learning

Overfit a single
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

•
•
•

•
•
•

Numerical issue. Check all exp, log, and div operations
Learning rate too high

Data or labels corrupted (e.g., zeroed or incorrectly
shuffled)
Learning rate too high

Learning rate too low
Gradients not flowing through the whole model
Too much regularization

Incorrect input to loss function (e.g., softmax instead of
logits)
Data or labels corrupted

•
•
•
•
•

•

Implementing bug-free DL models

Troubleshooting - debug 69

Flipped the sign of the loss function / gradient
Learning rate too high

Softmax taken over wrong dimension

Full Stack Deep Learning

Example

Troubleshooting - overview 70

Full Stack Deep Learning

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps

Implementing bug-free DL models

Troubleshooting - debug 71

Full Stack Deep Learning

Hierarchy of known results

More
useful

Less
useful

You can:

• Walk through code line-by-line and
ensure you have the same output

• Ensure your performance is up to par
with expectations

Troubleshooting - debug 72

• Official model implementation evaluated on similar dataset
to yours

Full Stack Deep Learning

Hierarchy of known results

More
useful

Less
useful

You can:

• Walk through code line-by-line and
ensure you have the same output

Troubleshooting - debug 73

• Official model implementation evaluated on benchmark
(e.g., MNIST)

Full Stack Deep Learning

• Unofficial model implementation

Hierarchy of known results

More
useful

Less
useful

You can:

• Same as before, but with lower
confidence

Troubleshooting - debug 74

Full Stack Deep Learning

Hierarchy of known results

More
useful

Less
useful

You can:

Troubleshooting - debug 75

• Ensure your performance is up to par
with expectations

• Results from a paper (with no code)

Full Stack Deep Learning

• Results from your model on a benchmark dataset (e.g.,
MNIST)

Hierarchy of known results

More
useful

Less
useful

You can:

• Make sure your model performs well in a
simpler setting

Troubleshooting - debug 76

Full Stack Deep Learning

• Results from a similar model on a similar dataset

Hierarchy of known results

More
useful

Less
useful

You can:

• Get a general sense of what kind of
performance can be expected

Troubleshooting - debug 77

Full Stack Deep Learning

• Super simple baselines (e.g., average of outputs or linear
regression)

Hierarchy of known results

More
useful

Less
useful

You can:

• Make sure your model is learning
anything at all

Troubleshooting - debug 78

Full Stack Deep Learning

Hierarchy of known results

More
useful

Troubleshooting - debug 79

Less
useful

• Official model implementation evaluated on similar dataset
to yours

• Official model implementation evaluated on benchmark
(e.g., MNIST)

•

•

•

Unofficial model implementation

Results from the paper (with no code)

Results from your model on a benchmark dataset (e.g.,
MNIST)

•

•

Results from a similar model on a similar dataset

Super simple baselines (e.g., average of outputs or linear
regression)

Full Stack Deep Learning

Summary: how to implement & debug

Get your model to
run

Compare to a
known result

Overfit a single
batchb

a

c

Steps Summary

• Look for corrupted data, over-
regularization, broadcasting errors

Troubleshooting - debug 80

• Keep iterating until model performs
up to expectations

• Step through in debugger & watch out
for shape, casting, and OOM errors

Full Stack Deep Learning

Questions?

Troubleshooting - debug 81

Full Stack Deep Learning

Strategy for DL troubleshooting

Tune hyper-
parameters

Implement
& debugStart simple Evaluate

Improve
model/data

Meets re-
quirements

Troubleshooting - evaluate 82

Full Stack Deep Learning

Bias-variance decomposition

Troubleshooting - evaluate 83

Full Stack Deep Learning

Bias-variance decomposition

Troubleshooting - evaluate 84

Full Stack Deep Learning

Bias-variance decomposition

Troubleshooting - evaluate 85

Full Stack Deep Learning

25

5

2	 	 	 27	 	

32
2	 	 	 34

Irre
ducible error

Troubleshooting - evaluate 86

Avoidable bias

i.e., underfitt
ing) Train error

Variance (i.e.,

overfitt
ing) Val error

Val set overfitt
ing

Test error

20

15

10

5

0

25

30

35

40
Breakdown of test error by source

Bias-variance decomposition

Full Stack Deep Learning

Bias-variance decomposition

Troubleshooting - evaluate 87

• Test error = irreducible error + bias + variance + val overfitting

• This assumes train, val, and test all come from the same distribution.
What if not?

Full Stack Deep Learning

Handling distribution shift

Test data

Use two val sets: one sampled from training distribution and
one from test distribution

Troubleshooting - evaluate 88

Train data

Full Stack Deep Learning

The bias-variance tradeoff

Troubleshooting - evaluate 89

Full Stack Deep Learning

Bias-variance with distribution shift

Troubleshooting - evaluate 90

Full Stack Deep Learning

Bias-variance with distribution shift

25
2 27

3
2	 	 	 29	 	

32
2	 	 	 34

Irr
ed

uc
ib

le
er

ro
r

Troubleshooting - evaluate 91
Av

oid
ab

le
bi

as

(i.e
.,

un
de

rfi
tti

ng
)

Tr
ain

 er
ro

r

Va
ria

nc
e

Tr
ain

 va
l e

rro
r

Di
st

rib
ut

ion
 sh

ift
Te

st
 va

l e
rro

r
Va

l o
ve

rfi
tti

ng

Te
st

 er
ro

r

40

35

30

25

20

15

10

5

0

Breakdown of test error by source

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Error source Value

Goal
performance 1%

Train error 20%

Validation error	 27%

Test error	 28%

Train - goal = 19%
(under-fitting)

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - evaluate 92

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Train error	 20%

Validation error	 27%

Error source Value

Goal
performance 1%

Test error	 28%

Val - train = 7%
(over-fitting)

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - evaluate 93

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Error source Value

Goal
performance 1%

Train error	 20%

Validation error	 27%

Test error 28% (looks good!)
Test - val = 1% 0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - evaluate 94

Full Stack Deep Learning

Summary: evaluating model performance

Troubleshooting - evaluate 95

Test error = irreducible error + bias + variance
+ distribution shift + val overfitting

Full Stack Deep Learning

Questions?

Troubleshooting - evaluate 96

Full Stack Deep Learning

Strategy for DL troubleshooting

Tune hyper-
parameters

Implement
& debugStart simple Evaluate

Improve
model/data

Meets re-
quirements

Troubleshooting - improve 97

Full Stack Deep Learning

Address distribution
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets
(if applicable)

b Address over-fitting

a Address under-fitting

c

Steps

d

Troubleshooting - improve 98

Full Stack Deep Learning

Addressing under-fitting (i.e., reducing bias)

Try first

Troubleshooting - improve 99

Try later

A. Make your model bigger (i.e., add layers or use
more units per layer)

B. Reduce regularization

C. Error analysis

D. Choose a different (closer to state-of-the art)
model architecture (e.g., move from LeNet to
ResNet)

E. Tune hyper-parameters (e.g., learning rate)

F. Add features

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy
(i.e., 1% error)

Error source Value Value

Goal performance 1% 1%

Train error 20% 7%

Validation error 27% 19%

Test error 28% 20%

Add more layers
to the ConvNet

Troubleshooting - improve 100

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy
(i.e., 1% error)

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 20% 7% 3%

Validation error 27% 19% 10%

Test error 28% 20% 10%

Switch to
ResNet-101

Troubleshooting - improve 101

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy
(i.e., 1% error)

Error source Value Value Value Value

Goal performance 1% 1% 1% 1%

Train error 20% 7% 3% 0.8%

Validation error 27% 19% 10% 12%

Test error 28% 20% 10% 12%

Tune learning
rate

Troubleshooting - improve 102

Full Stack Deep Learning

Address distribution
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets
(if applicable)

b Address over-fitting

a Address under-fitting

c

Steps

d

Troubleshooting - improve 103

Full Stack Deep Learning

Addressing over-fitting (i.e., reducing variance)
Try first

Troubleshooting - improve 104

Try later

A. Add more training data (if possible!)

B. Add normalization (e.g., batch norm, layer norm)

C. Add data augmentation

D. Increase regularization (e.g., dropout,	 L2, weight decay)

E. Error analysis

F. Choose a different (closer to state-of-the-art) model
architecture

G. Tune hyperparameters

H. Early stopping

I. Remove features

J. Reduce model size

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Error source Value

Goal performance 1%

Train error 0.8%

Validation error 12%

Test error 12%
0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - improve 105

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Error source Value Value

Goal performance 1% 1%

Train error 0.8% 1.5%

Validation error 12% 5%

Test error 12% 6%

Increase dataset
size to 250,000

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - improve 106

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 0.8% 1.5% 1.7%

Validation error 12% 5% 4%

Test error 12% 6% 4%

Add weight
decay

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - improve 107

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Error source Value Value Value Value

Goal performance	 1%	 1%	 1%	 1%

Train error	 0.8%	 1.5%	 1.7%	 2%

Test error	 12%	 6%	 4%	 2.6%

Add data
augmentation

Validation error	 12%	 5%	 4%	 2.5%

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - improve 108

Full Stack Deep Learning

Train, val, and test error for pedestrian detection

Error source Value Value Value Value Value

Goal performance	 1%	 1%	 1%	 1%	 1%

Train error	 0.8%	 1.5%	 1.7%	 2%	 0.6%

Validation error	 12%	 5%	 4%	 2.5%

Test error	 12%	 6%	 4%	 2.6%	 1.0%

Tune num layers, optimizer params, weight
initialization, kernel size, weight decay

0.9%

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - improve 109

Full Stack Deep Learning

Address distribution
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets
(if applicable)

b Address over-fitting

c

Steps

a Address under-fitting

d

Troubleshooting - improve 110

Full Stack Deep Learning

Addressing distribution shift

Try first

Troubleshooting - improve 111

Try later

A. Analyze test-val set errors & collect more
training data to compensate

B. Analyze test-val set errors & synthesize more
training data to compensate

C. Apply domain adaptation techniques to
training & test distributions

Full Stack Deep Learning

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Troubleshooting - improve 112

Full Stack Deep Learning

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 1: hard-to-see
pedestrians

Troubleshooting - improve 113

Full Stack Deep Learning

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 2: reflections

Troubleshooting - improve 114

Full Stack Deep Learning

Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 3 (test-val only):
night scenes

Troubleshooting - improve 115

Full Stack Deep Learning

Error analysis

Error type
Error %

(train-
val)

Error %
(test-
val)

Potential solutions Priority

1. Hard-to-
see
pedestrians

0.1% 0.1%
• Better sensors

Low

2. Reflections 0.3% 0.3%

• Collect more data with reflections

• Add synthetic reflections to train set

• Try to remove with pre-processing

• Better sensors

Medium

3.
Nighttim
e
scenes

0.1% 1%

• Collect more data at night

• Synthetically darken training images

• Simulate night-time data

• Use domain adaptation

High

Troubleshooting - improve 116

Full Stack Deep Learning

Domain adaptation

What is it?

Techniques to train on “source”
distribution and generalize to another
“target” using only unlabeled data or

limited labeled data

When should you consider using it?

• Access to labeled data from test
distribution is limited

• Access to relatively similar data is
plentiful

Troubleshooting - improve 117

Full Stack Deep Learning

Types of domain adaptation

Troubleshooting - improve 118

Type Use case Example techniques

Supervised You have limited data
 from target domain

• Fine-tuning a
pre- trained
model

• Adding target data
to train set

You have lots of un-

Un-supervised labeled data from target

domain

• Correlation
Alignment (CORAL)

• Domain confusion

• CycleGAN

Full Stack Deep Learning

Address distribution
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets
(if applicable)

b Address over-fitting

c

Steps

a Address under-fitting

d

Troubleshooting - improve 119

Full Stack Deep Learning

Rebalancing datasets

Troubleshooting - improve 120

• If (test)-val looks significantly better than test, you overfit to the val set

• This happens with small val sets or lots of hyper parameter tuning

• When it does, recollect val data

Full Stack Deep Learning

Questions?

Troubleshooting - improve 121

Full Stack Deep Learning

Strategy for DL troubleshooting

Tune hyper-
parameters

Implement
& debugStart simple Evaluate

Improve
model/data

Meets re-
quirements

Troubleshooting - tune 122

Full Stack Deep Learning

Hyperparameter optimization

Model & optimizer choices?
Network: ResNet

- How many layers?

- Weight initialization?

- Kernel size?

- Etc

Optimizer: Adam
- Batch size?

- Learning rate?

- beta1, beta2, epsilon?

Regularization
- ….

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - tune 123

Full Stack Deep Learning

Which hyper-parameters to tune?

Choosing hyper-parameters

• More sensitive to some than others

• Depends on choice of model

• Rules of thumb (only) to the right

• Sensitivity is relative to default values!

(e.g., if you are using all-zeros weight
initialization or vanilla SGD, changing to the
defaults will make a big difference)

Hyperparameter Approximate sensitivity

Troubleshooting - tune 124

Learning rate	 High
Learning rate schedule	 High

Optimizer choice	 Low
Other optimizer params

(e.g., Adam beta1) Low

Batch size	 Low
Weight initialization	 Medium

Loss function	 High
Model depth	 Medium

Layer size	 High
Layer params

(e.g., kernel size) Medium

Weight of regularization	 Medium
Nonlinearity	 Low

Full Stack Deep Learning

Method 1: manual hyperparam optimization

How it works

• Understand the algorithm

• E.g., higher learning rate means faster

less stable training

• Train & evaluate model

• Guess a better hyperparam value & re-

evaluate

• Can be combined with other methods (e.g.,

manually select parameter ranges to
optimizer over)

Advantages

• For a skilled practitioner, may require least
computation to get good result

Disadvantages

• Requires detailed understanding of the
algorithm

• Time-consuming

Troubleshooting - tune 125

Full Stack Deep Learning

Method 2: grid search
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

How it works

Disadvantages

• Not very efficient: need to train on all
cross-combos of hyper-parameters

• May require prior knowledge about
parameters to get

good results

Hyperparameter 2 (e.g., learning rate)

Troubleshooting - tune 126

• Super simple to implement

• Can produce good results

Advantages

Full Stack Deep Learning

Method 3: random search
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

How it works

Disadvantages

• Not very interpretable

• May require prior knowledge about

parameters to get

good results

Hyperparameter 2 (e.g., learning rate)

Troubleshooting - tune 127

Advantages

• Easy to implement

• Often produces better results than grid

search

Full Stack Deep Learning

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

Troubleshooting - tune 128

Full Stack Deep Learning

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

Best performers

Troubleshooting - tune 129

Full Stack Deep Learning

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

Troubleshooting - tune 130

Full Stack Deep Learning

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

Troubleshooting - tune 131

Full Stack Deep Learning

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

.,
ba

tc
h

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

• Can narrow in on very high performing
hyperparameters

• Most used method in practice

• Somewhat manual process

Advantages

etc.

Troubleshooting - tune 132

Full Stack Deep Learning

Summary of how to optimize hyperparams

Troubleshooting - tune 133

• Coarse-to-fine random searches

• Consider Bayesian hyper-parameter optimization solutions
as your codebase matures

Full Stack Deep Learning

Questions?

Troubleshooting - tune 134

Full Stack Deep Learning

Conclusion

Troubleshooting - conclusion 135

• DL debugging is hard due to many
competing sources of error

• To train bug-free DL models, we treat
building our model as an iterative process

• The following steps can make the process
easier and catch errors as early as possible

Full Stack Deep Learning

How to build bug-free DL models

Tune hyp-
eparams

Implement
& debug

Start
simple

Evaluate

Improve
model/data

• Choose the simplest model & data possible
(e.g., LeNet on a subset of your data)

Troubleshooting - conclusion 136

• Once model runs, overfit a single batch &
reproduce a known result

• Apply the bias-variance decomposition to
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add
data or regularize if you overfit

Full Stack Deep Learning

Where to go to learn more

Troubleshooting - conclusion 137

• Andrew Ng’s book Machine Learning Yearning (http://
www.mlyearning.org/)

• The following Twitter thread: https://twitter.com/karpathy/
status/1013244313327681536

• This blog post: https://pcc.cs.byu.edu/2017/10/02/
practical-advice-for- building-deep-neural-networks/

http://www.mlyearning.org/)
http://www.mlyearning.org/)

Full Stack Deep Learning

Thank you!

138

