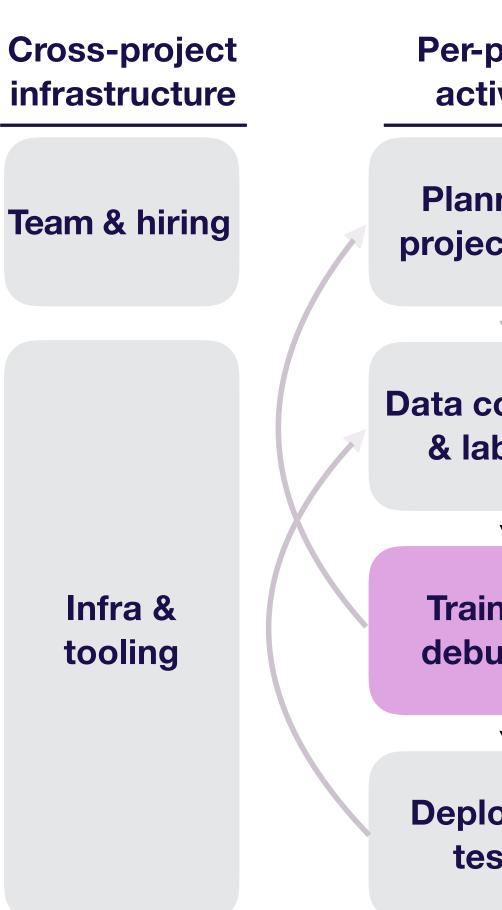


Troubleshooting Deep Neural Networks

Josh Tobin, Sergey Karayev, Pieter Abbeel Modified by Jiayuan Gu

See full videos and more information from https://course.fullstackdeeplearning.com/course-content/training-and-debugging

Lifecycle of a ML project



Troubleshooting - overview

Full Stack Deep Learning

Per-project activities **Planning &** project setup **Data collection** & labeling **Training &** debugging **Deploying &** testing

Why talk about DL troubleshooting?

Debugging: first it doesn't compile. then doesn't link. then segfaults. then gives all zeros. then gives wrong answer. then only maybe works

Why talk about DL troubleshooting?

Common sentiment among practitioners:

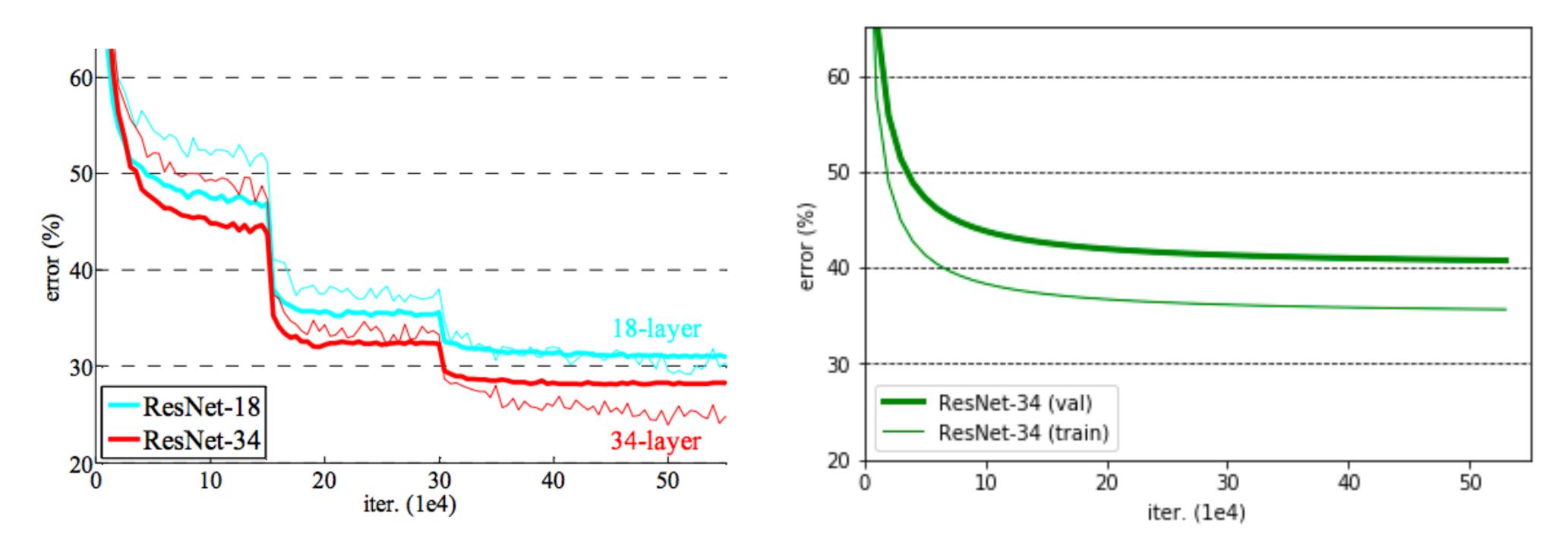
80-90% of time debugging and tuning

10-20% deriving math or implementing things

Why is DL troubleshooting so hard?

Troubleshooting - overview

Suppose you can't reproduce a result



He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Troubleshooting - overview

Full Stack Deep Learning

Your learning curve

Why is your performance worse?

Poor model performance

Troubleshooting - overview

Why is your performance worse?

Implementation bugs

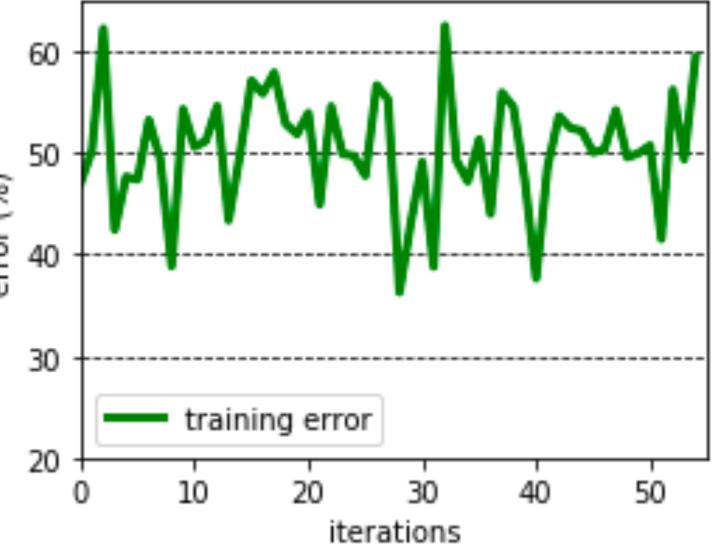
Poor model performance

Troubleshooting - overview

Most DL bugs are invisible

- 1 features = glob.glob('path/to/features/*')
- 2 labels = glob.glob('path/to/labels/*')
- 3 train(features, labels)

Troubleshooting - overview

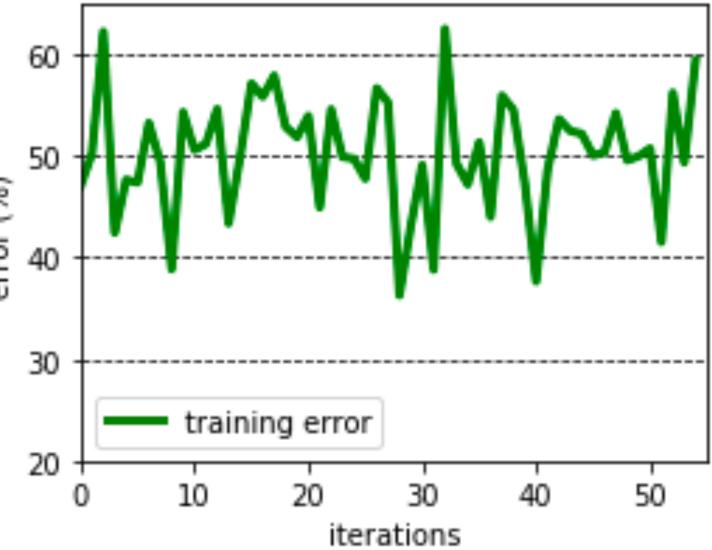


Most DL bugs are invisible

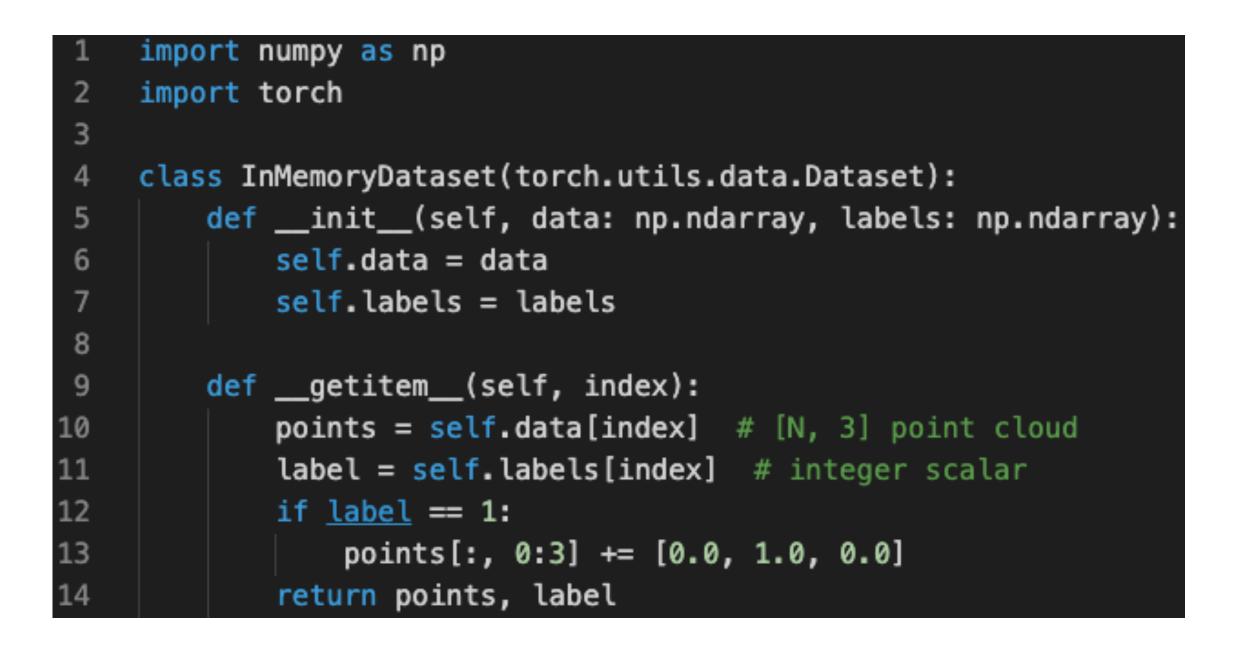
Labels out of order!

- 1 features = glob.glob('path/to/features/*')
- 2 labels = glob.glob('path/to/labels/*')
- 3 train(features, labels)

Troubleshooting - overview

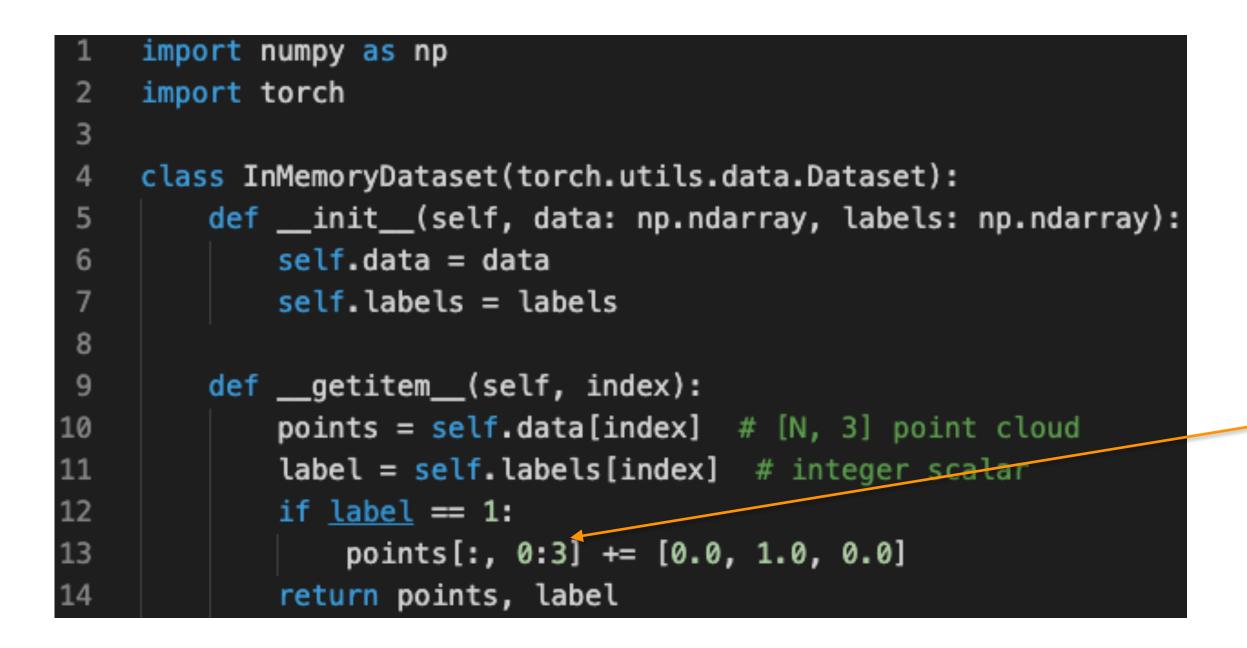


Another example



Model performs poorly after the first epoch.

Another example



CAUATION: In-place operation!

Why is your performance worse?

Implementation bugs

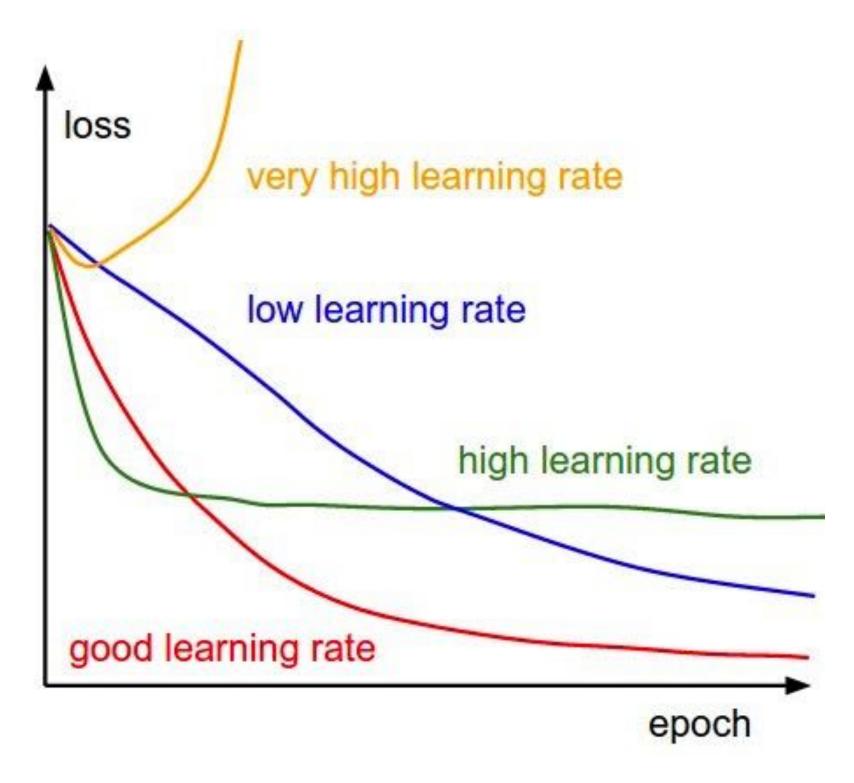
Poor model performance

Troubleshooting - overview

Full Stack Deep Learning

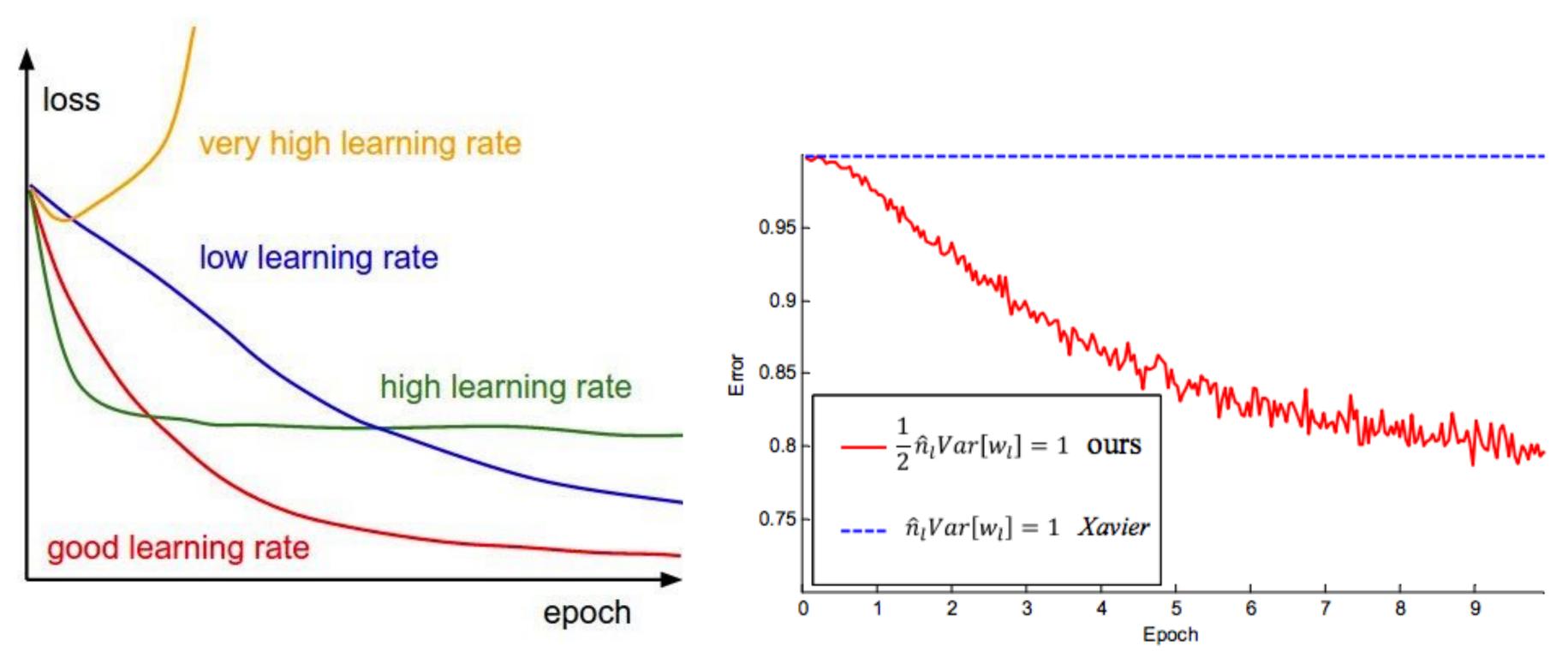
Hyperparameter choices

Models are sensitive to hyperparameters



Andrej Karpathy, CS231n course notes

Models are sensitive to hyperparameters



Andrej Karpathy, CS231n course notes

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015.

Full Stack Deep Learning

Troubleshooting - overview

Why is your performance worse?

Implementation bugs

Poor model performance

Data/model fit

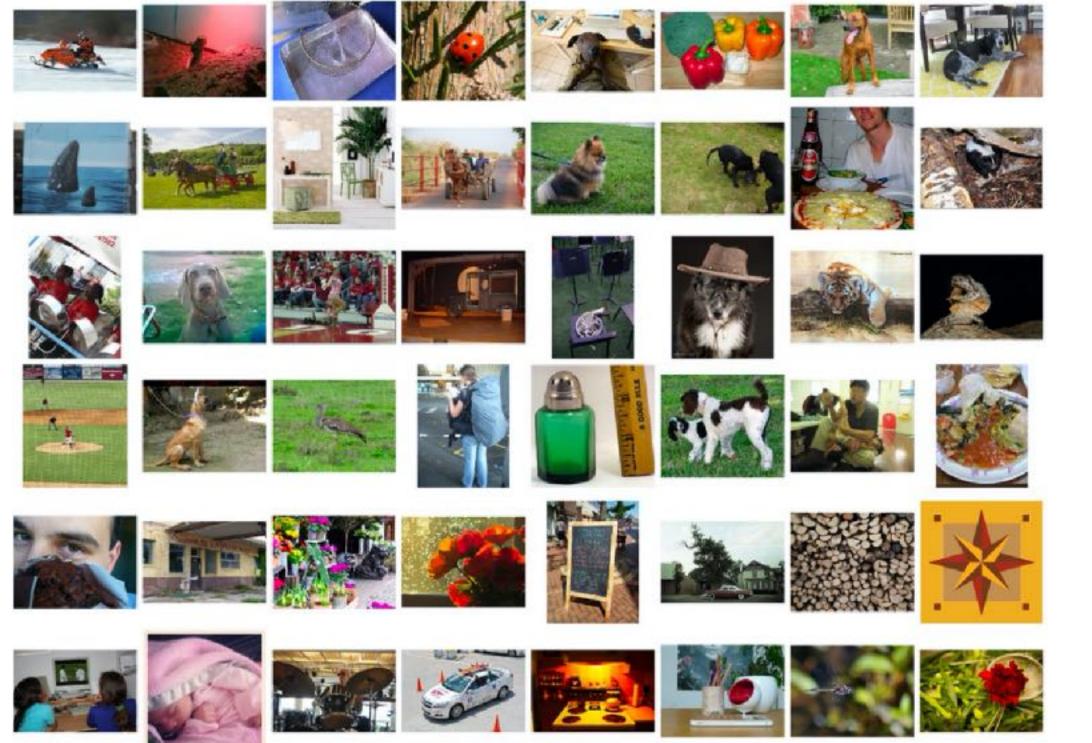
Troubleshooting - overview

Full Stack Deep Learning

Hyperparameter choices

Data / model fit

Data from the paper: ImageNet



Troubleshooting - overview

Yours: self-driving car images

Why is your performance worse?

Implementation bugs

Poor model performance

Data/model fit

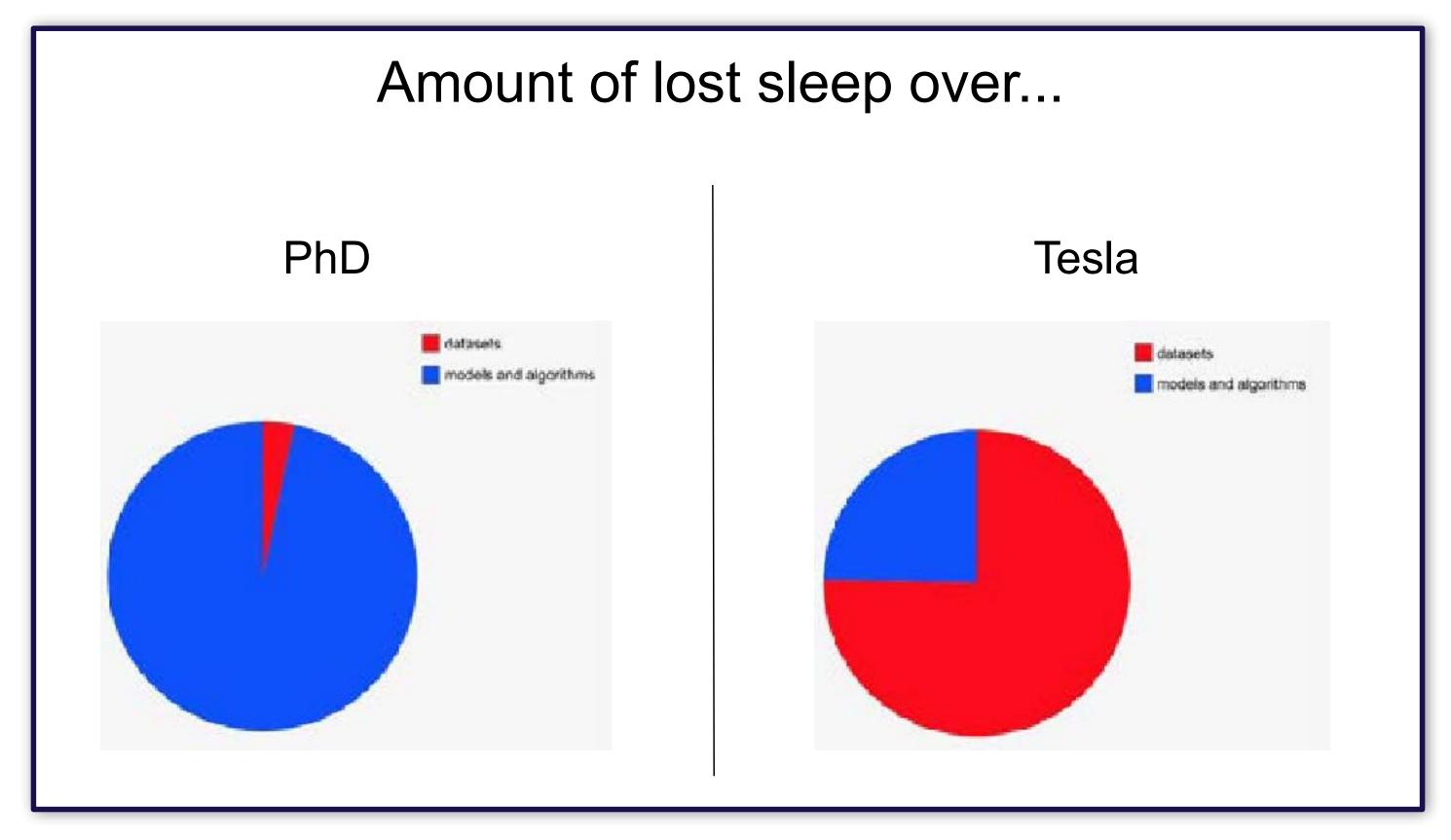
Troubleshooting - overview

Full Stack Deep Learning

Hyperparameter choices

Dataset construction

Constructing good datasets is hard



Slide from Andrej Karpathy's talk "Building the Software 2.0 Stack" at TrainAl 2018, 5/10/2018

Common dataset construction issues

- Not enough data
- Class imbalances
- Noisy labels
- Train / test from different distributions
- etc

Takeaways: why is troubleshooting hard?

- Hard to tell if you have a bug
- Lots of possible sources for the same degradation in performance
- Results can be sensitive to small changes in hyperparameters and dataset makeup

Strategy for DL troubleshooting

Troubleshooting - overview

Key mindset for DL troubleshooting

Pessimism

Troubleshooting - overview

Key idea of DL troubleshooting

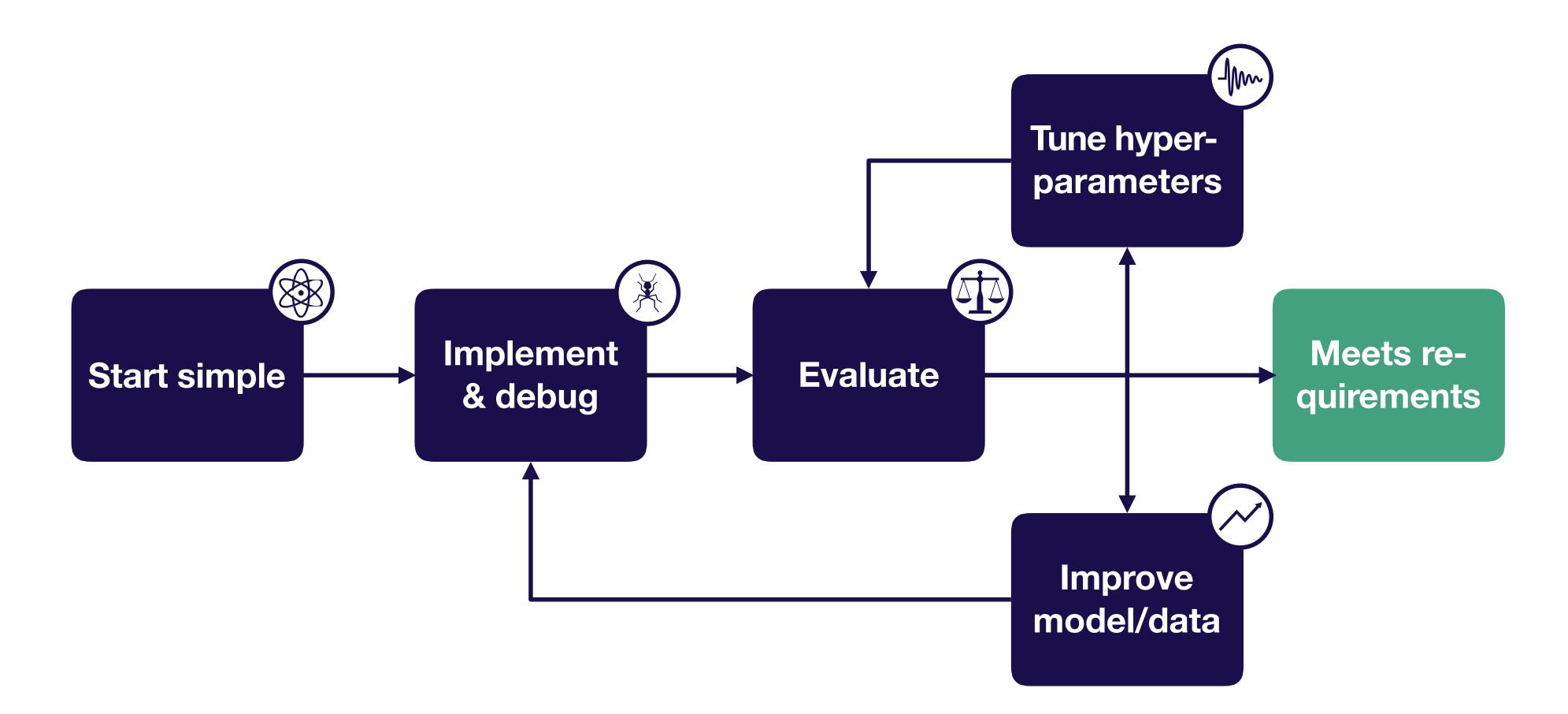
Since it's hard to disambiguate errors...

Troubleshooting - overview

Full Stack Deep Learning

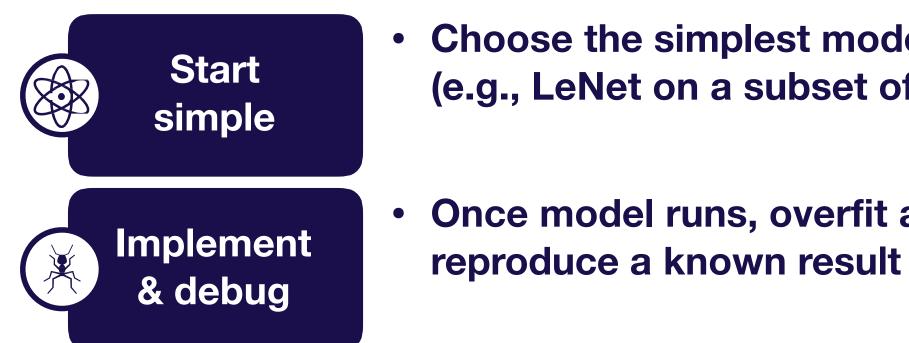
....Start simple and gradually ramp up complexity

Strategy for DL troubleshooting



Troubleshooting - overview

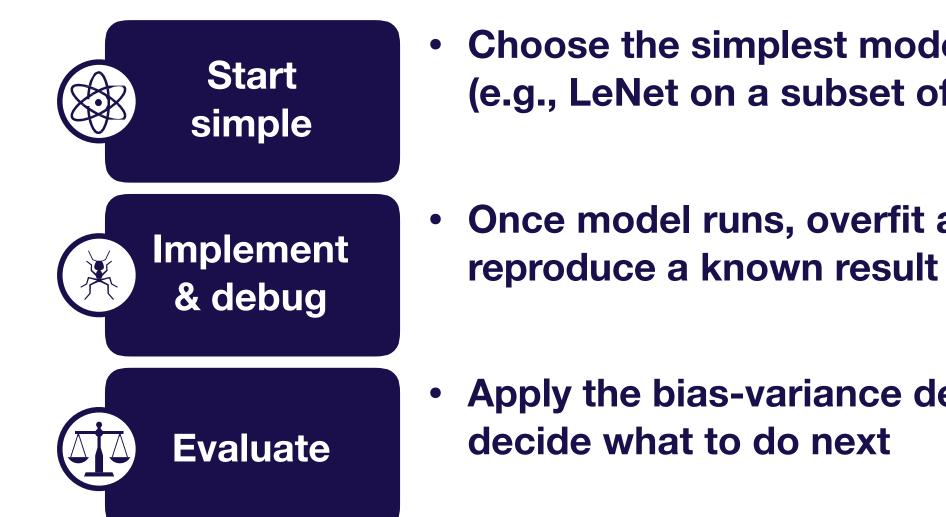
Choose the simplest model & data possible (e.g., LeNet on a subset of your data)



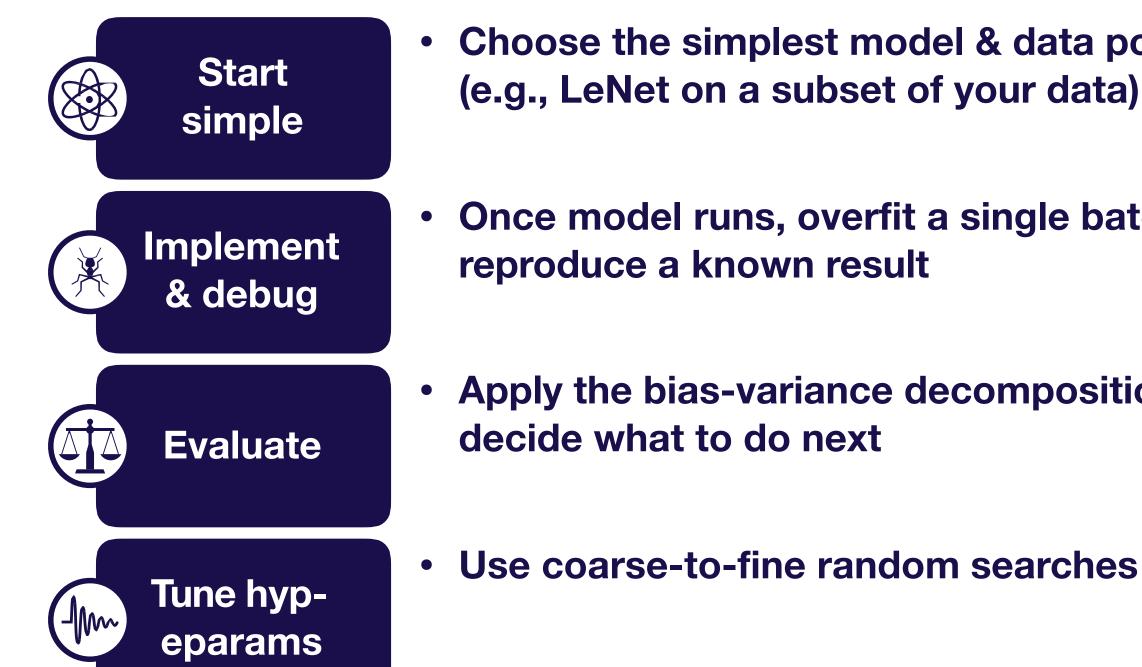
Full Stack Deep Learning

• Choose the simplest model & data possible (e.g., LeNet on a subset of your data)

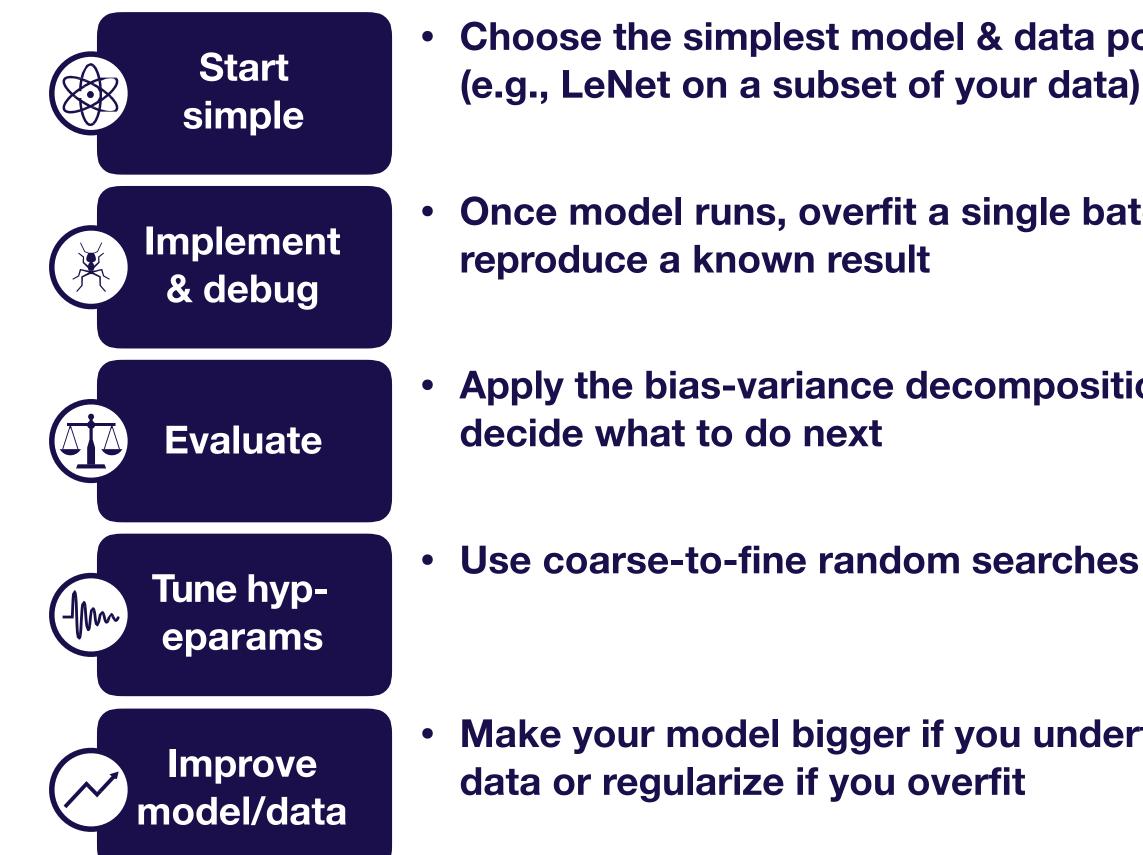
Once model runs, overfit a single batch &



- Choose the simplest model & data possible (e.g., LeNet on a subset of your data)
- Once model runs, overfit a single batch &
- Apply the bias-variance decomposition to



- Choose the simplest model & data possible (e.g., LeNet on a subset of your data)
- Once model runs, overfit a single batch &
- Apply the bias-variance decomposition to



Troubleshooting - overview

Full Stack Deep Learning

- Choose the simplest model & data possible (e.g., LeNet on a subset of your data)
- Once model runs, overfit a single batch &
- Apply the bias-variance decomposition to

Make your model bigger if you underfit; add

We'll assume you already have...

- Initial test set
- A single metric to improve
- Target performance based on human-level performance, published results, previous baselines, etc

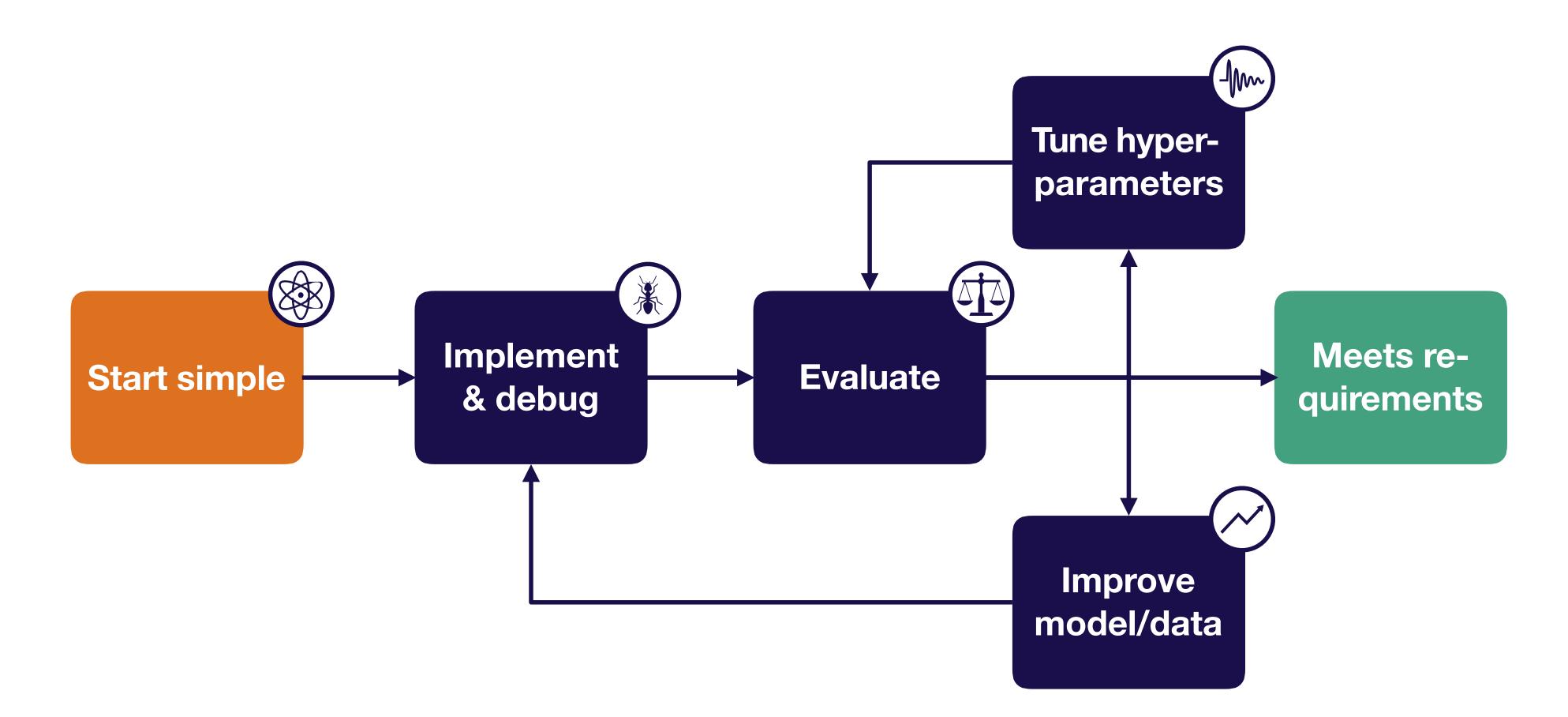
Running example

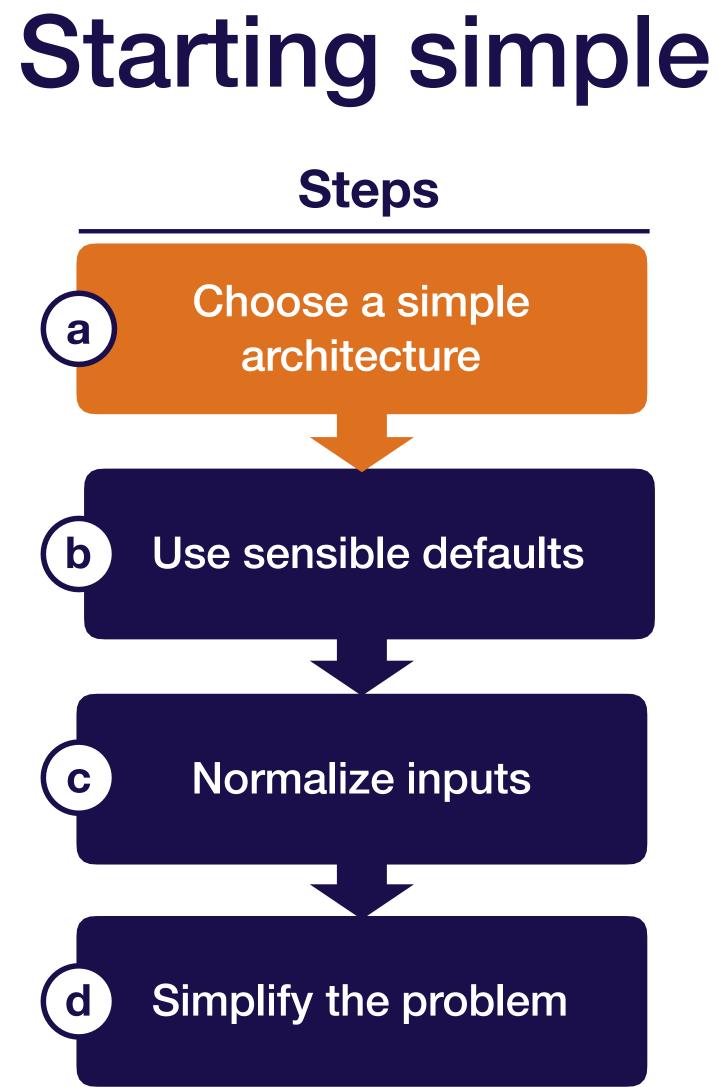
0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Troubleshooting - overview

Strategy for DL troubleshooting





Demystifying architecture selection

Start here

LeNet-like architecture

Sequences

LSTM with one hidden layer (or temporal convs)

Other

Fully connected neural net with one hidden layer

Full Stack Deep Learning

Consider using this later

ResNet

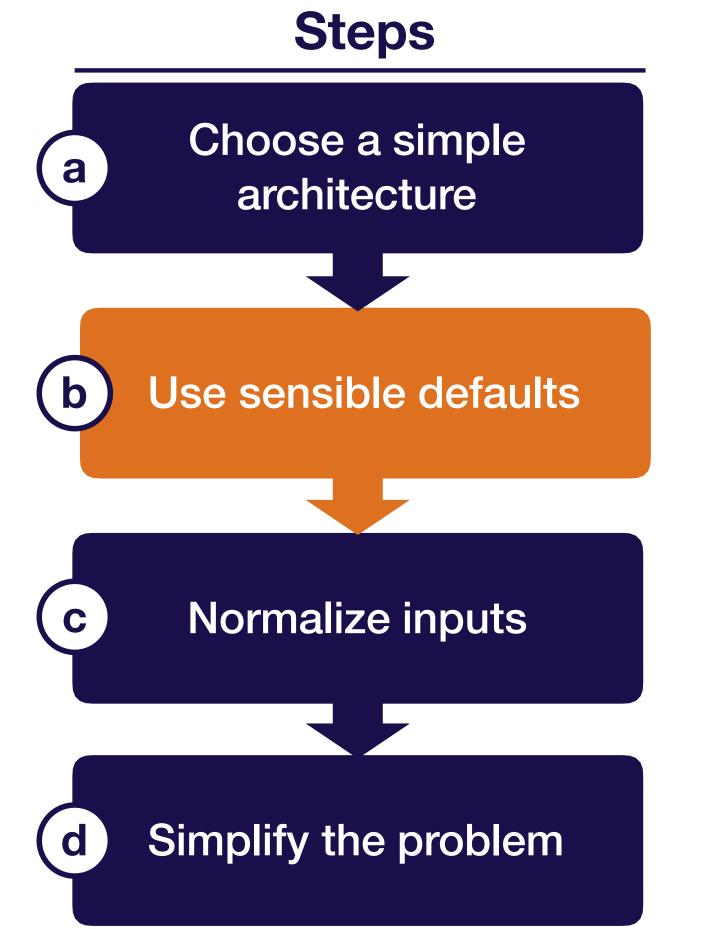
Attention model or WaveNet-like model

Problem-dependent

Example: Object Detection

Usually start from ResNet50-C5 to verify the idea Finally turn to ResNet101-FPN for the best performance

Troubleshooting - overview

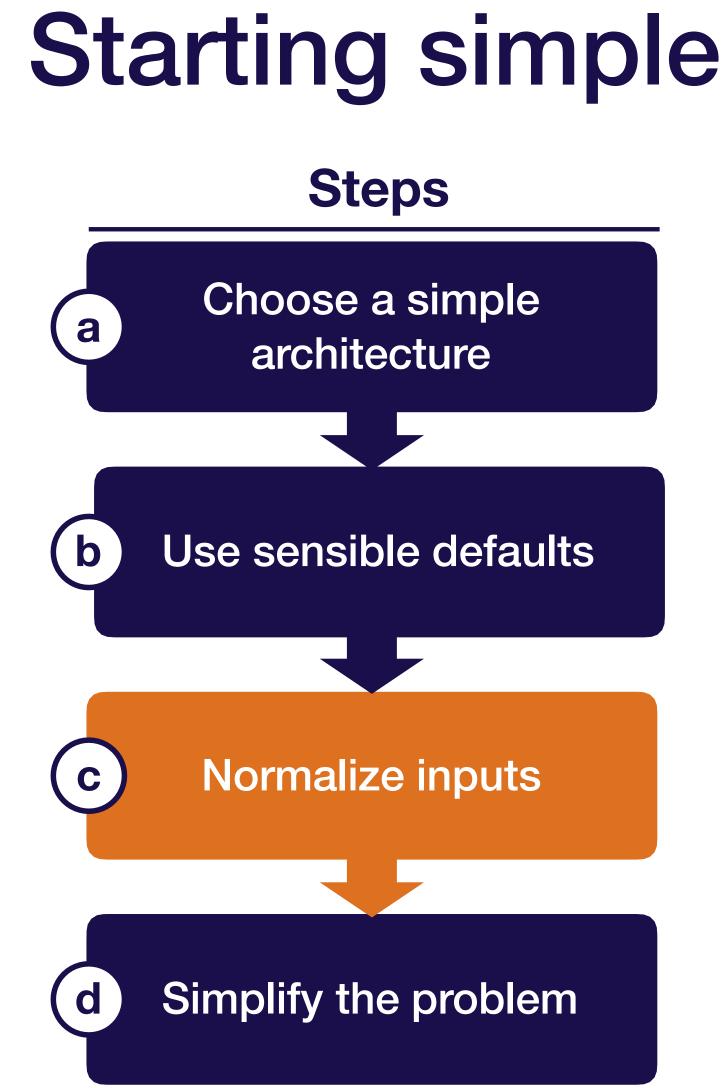


Troubleshooting - start simple

Recommended network / optimizer defaults

- **Optimizer:** Adam optimizer with learning rate 3e-4 \bullet
- Activations: relu (FC and Conv models), tanh (LSTMs)
- **Initialization:** He et al. normal (relu), Glorot normal (tanh) lacksquare
- **Regularization:** None \bullet
- **Data normalization**: None

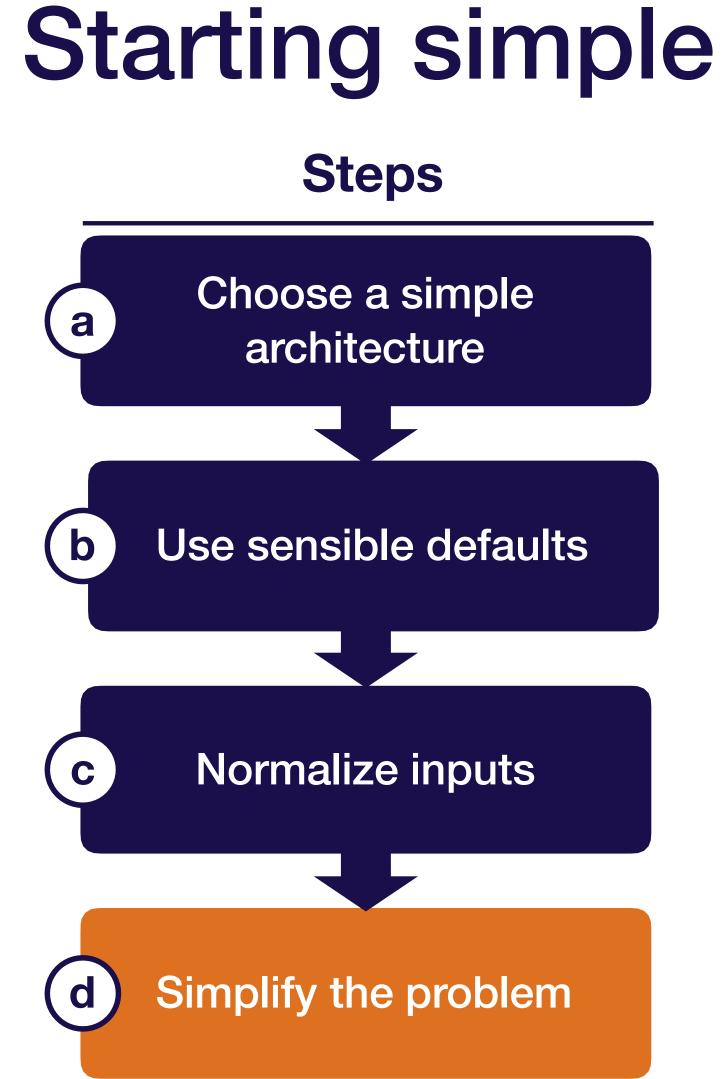
Troubleshooting - start simple



Troubleshooting - start simple

Important to normalize scale of input data

- Subtract mean and divide by variance
- For images, fine to scale values to [0, 1] or [-0.5, 0.5] (e.g., by dividing by 255) [Careful, make sure your library doesn't do it for you!]
- For point clouds (at least synthetic data), normalize to a unit sphere or cube



Consider simplifying the problem as well

- Start with a small training set (~10,000 examples)
- Use a fixed number of objects, classes, image size, etc. ullet
- Create a simpler synthetic training set ullet

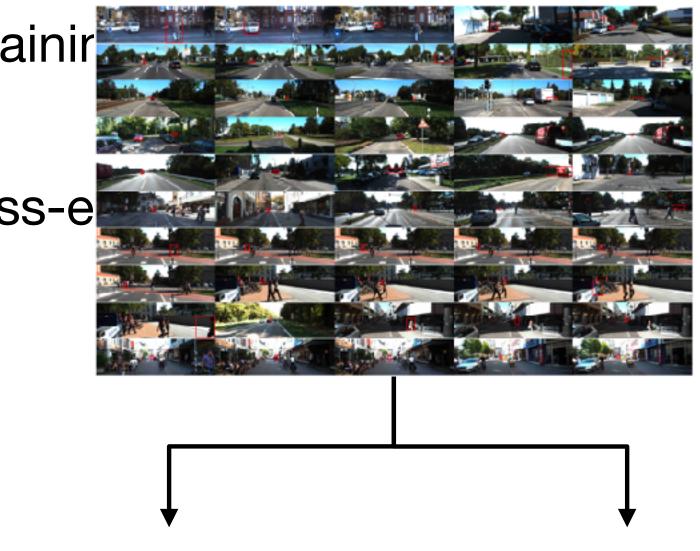
Simplest model for pedestrian detection

- Start with a subset of 10,000 images for trainir for test
- Use a LeNet architecture with sigmoid cross-e
- Adam optimizer with LR 3e-4
- No regularization

Troubleshooting - start simple

Full Stack Deep Learning

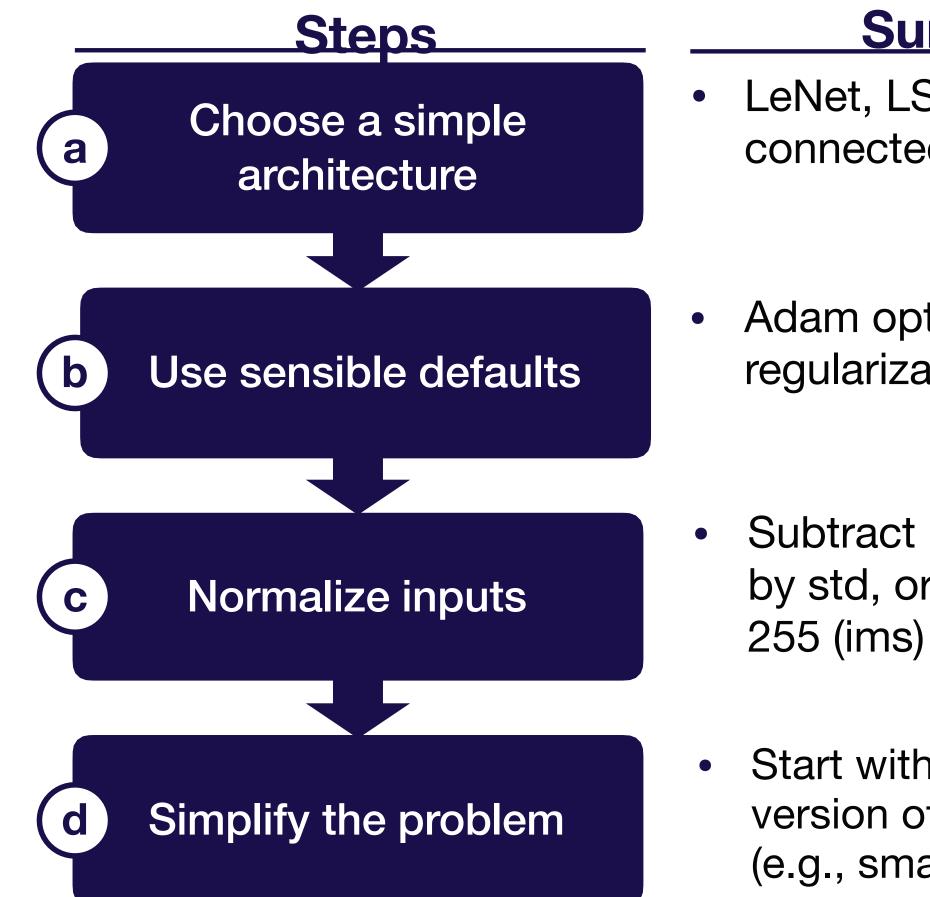
Running example



0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Starting simple



Full Stack Deep Learning

Summary

LeNet, LSTM, or fully connected

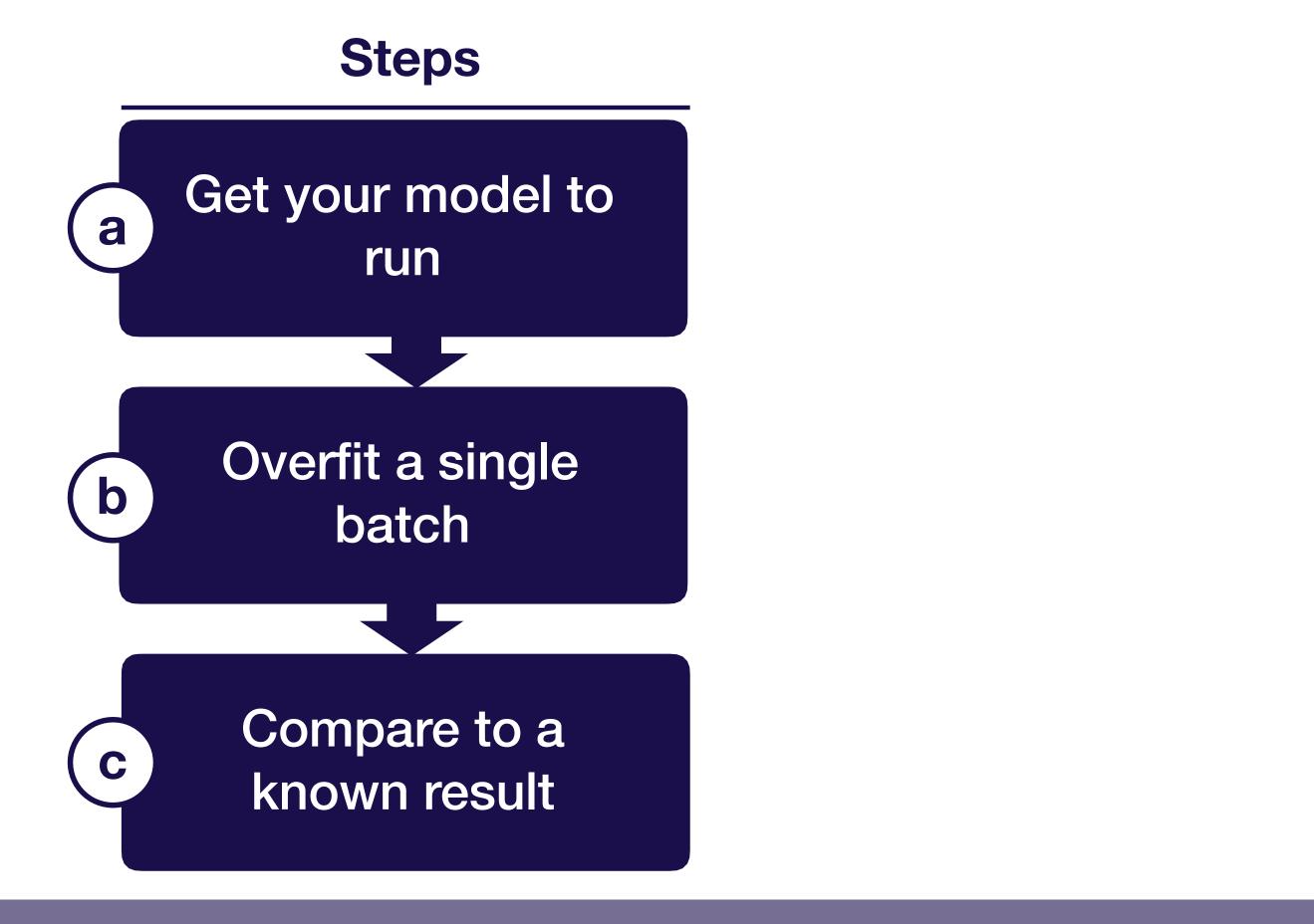
Adam optimizer & no regularization

Subtract mean and divide by std, or just divide by

• Start with a simpler version of your problem (e.g., smaller dataset)

Strategy for DL troubleshooting





Troubleshooting - debug

Preview: the five most common DL bugs

- Incorrect shapes for your tensors
 Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape = (None, 1), (x+y).shape = (None, None)
- Pre-processing inputs incorrectly
 E.g., Forgetting to normalize, or too much pre-processing
- Incorrect input to your loss function
 E.g., softmaxed outputs to a loss that expects logits
- Forgot to set up train mode for the net correctly E.g., toggling train/eval, controlling batch norm dependencies
- Numerical instability inf/NaN
 Often stems from using an exp, log, or div operation

Example

<pre>1 def transform_box(box, from_frame_pose, to_frame_pose, name=None):</pre>		
2	"""Transforms 3d upright boxes from one frame to another.	
3	Args:	
4	box: [, N, 7] boxes.	
5	<pre>from_frame_pose: [,4, 4] origin frame poses.</pre>	
6	to_frame_pose: [,4, 4] target frame poses.	
7	name: tf name scope.	
8	Returns:	
9	Transformed boxes of shape [, N, 7] with the same type as box.	
10		
11	<pre>with tf.compat.v1.name_scope(name, 'TransformBox'):</pre>	
12	<pre># transform is a [, 4, 4] tensor.</pre>	
13	<pre>transform = tf.linalg.matmul(tf.linalg.inv(to_frame_pose), from_frame_pose)</pre>	
14	<pre>heading = box[, -1] + tf.atan2(transform[, 1, 0], transform[, 0,</pre>	
15		
16	center = tf.einsum('ij,nj->ni', transform[, 0:3, 0:3],	
17	<pre>box[, 0:3]) + tf.expand_dims(</pre>	
18	box[, 0:3]) + tf.expand_dims(transform[, 0:3, 3], axis=-2)	
19		
20	<pre>return tf.concat([center, box[, 3:6], heading[, tf.newaxis]], axis=-1)</pre>	

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py

Example

```
def transform_box(box, from_frame_pose, to_frame_pose, name=None):
       """Transforms 3d upright boxes from one frame to another.
 2
 3
      Args:
         box: [..., N, 7] boxes.
 4
         from_frame_pose: [...,4, 4] origin frame poses.
 5
         to_frame_pose: [...,4, 4] target frame poses.
 6
        name: tf name scope.
 7
 8
       Returns:
 9
         Transformed boxes of shape [..., N, 7] with the same type as box.
       .....
10
11
       with tf.compat.v1.name_scope(name, 'TransformBox'):
         # transform is a [..., 4, 4] tensor.
12
13
         transform = tf.linalg.matmul(tf.linalg.inv(to_frame_pose), from_frame_pose)
         heading = box[..., -1] + tf.atan2(transform[..., 1, 0], transform[..., 0,
14
15
                                                                            0])
         center = tf.einsum('...ij,...nj->...ni', transform[..., 0:3, 0:3],
16
                            box[..., 0:3]) + tf.expand_dims(
17
                                transform[..., 0:3, 3], axis=-2)
18
19
         return tf.concat([center, box[..., 3:6], heading[..., tf.newaxis]], axis=-1)
20
```

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py

box[..., -1]: [..., N] tf.atan2(...): [...]

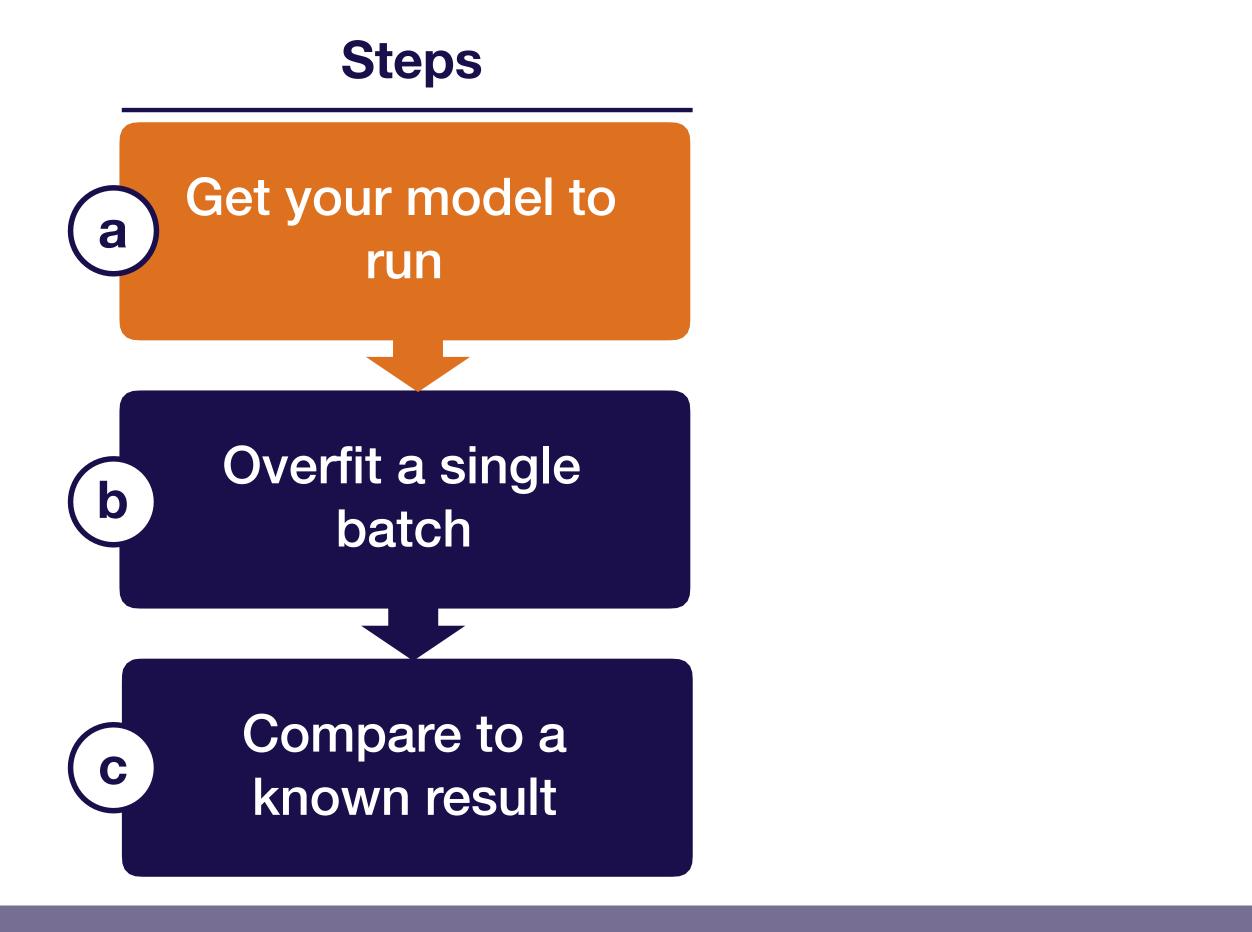
General advice for implementing your model

Lightweight implementation	Use off
 Minimum possible new lines of code for v1 	• Ke
 Rule of thumb: <200 lines 	ins
 (Tested infrastructure components are fine) 	tf • tf
	ins

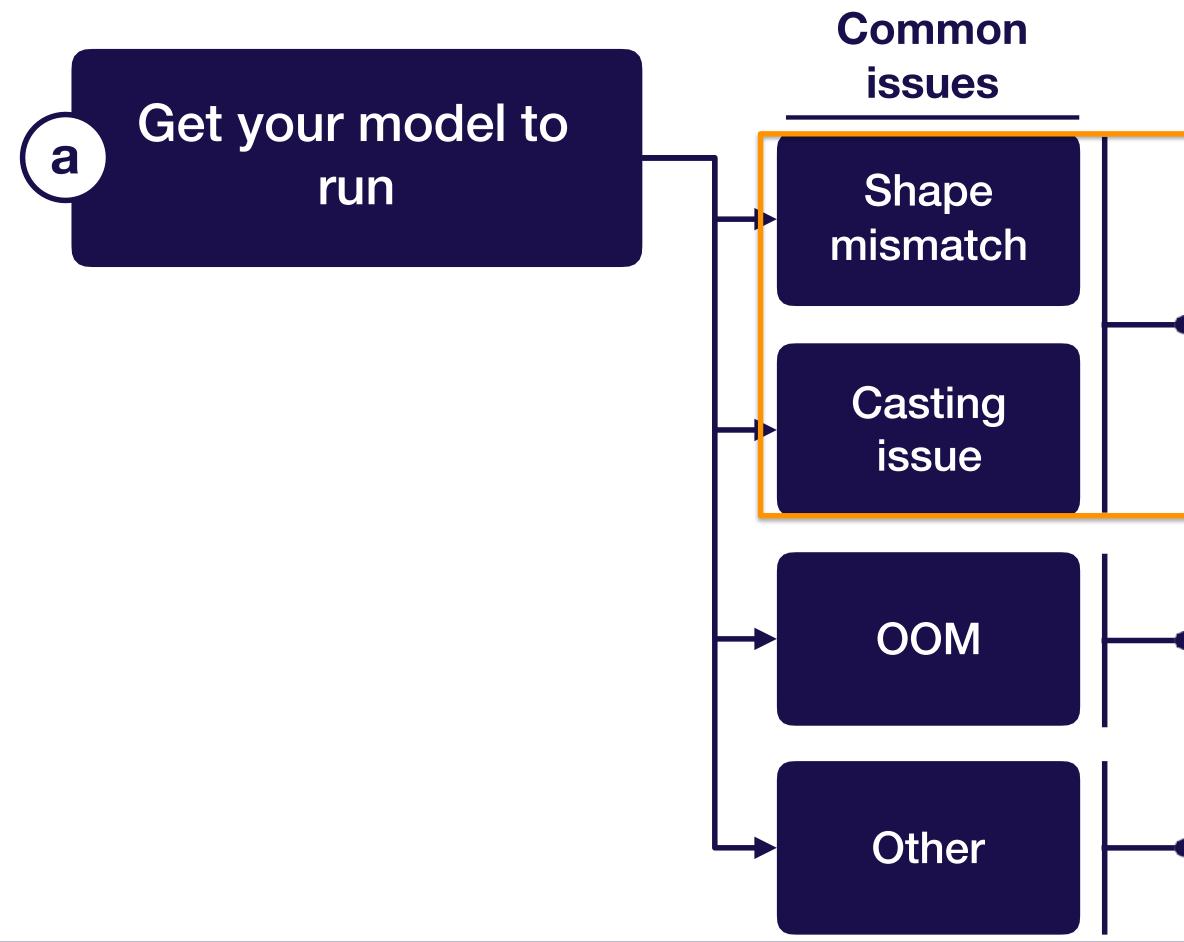
Build complicated data pipelines later

 Start with a dataset you can load into memory

- ff-the-shelf components, e.g.,
- Keras
- cf.layers.dense(...)
 nstead of
 cf.nn.relu(tf.matmul(W, x))
 cf.losses.cross_entropy(...)
- nstead of writing out the exp



Troubleshooting - debug



Troubleshooting - debug

Full Stack Deep Learning

Recommended resolution

Step through model creation and inference in a debugger

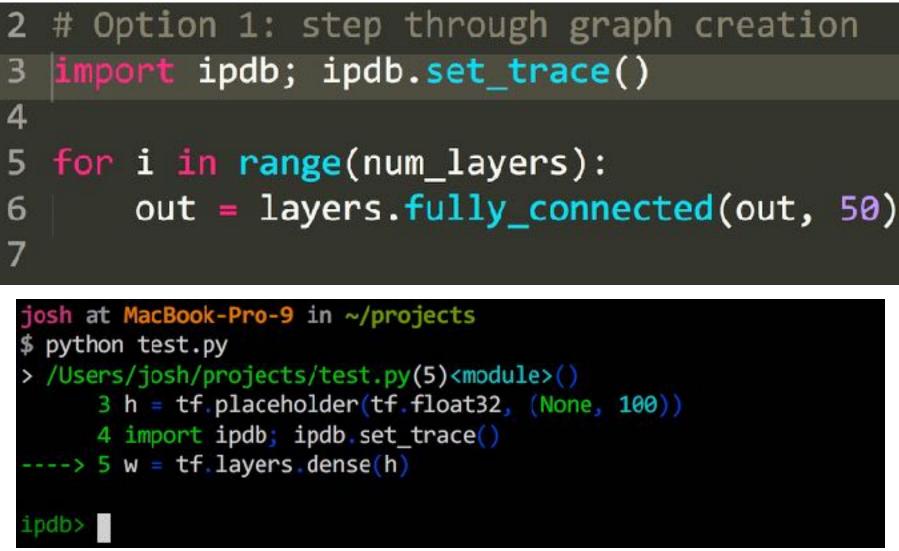
Scale back memory intensive operations one-by-one

Standard debugging toolkit (Stack **Overflow + interactive debugger)**

Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

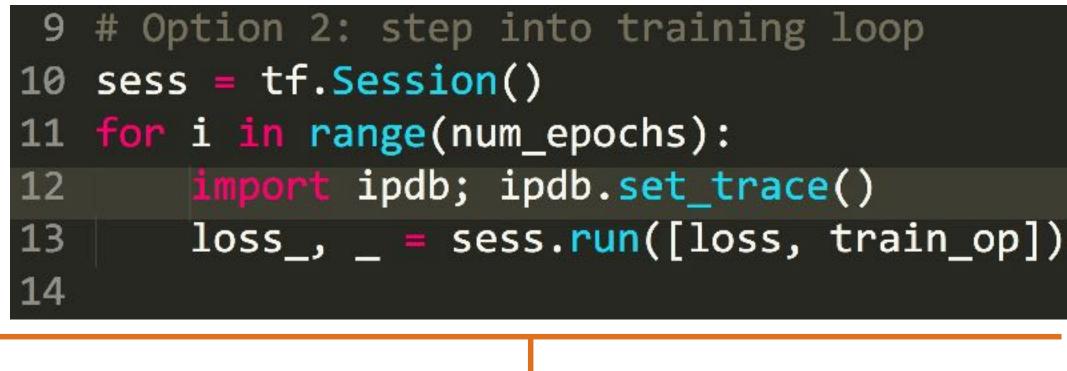
Option 1: step through graph creation



Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

Option 2: step into training loop



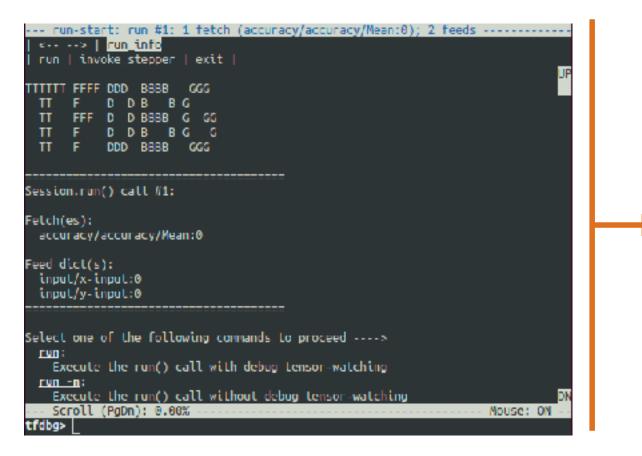
Evaluate tensors using sess.run(...)

Debuggers for DL code

- Pytorch: easy, use ipdb
- tensorflow: trickier

Option 3: use tfdb

python -m tensorflow.python.debug.examples.debug mnist --debug



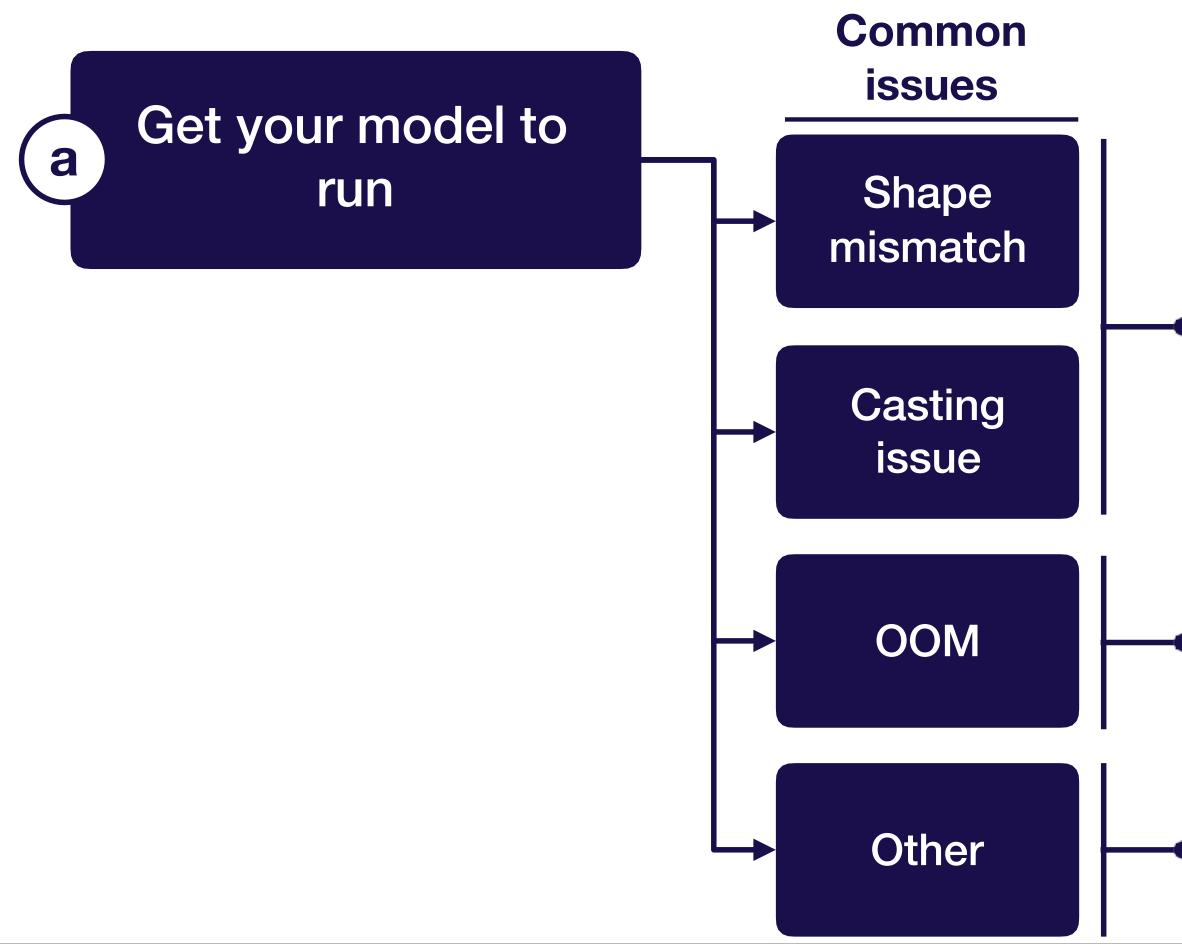
Stops

execution at

each

sess.run(...) and lets you

inspect



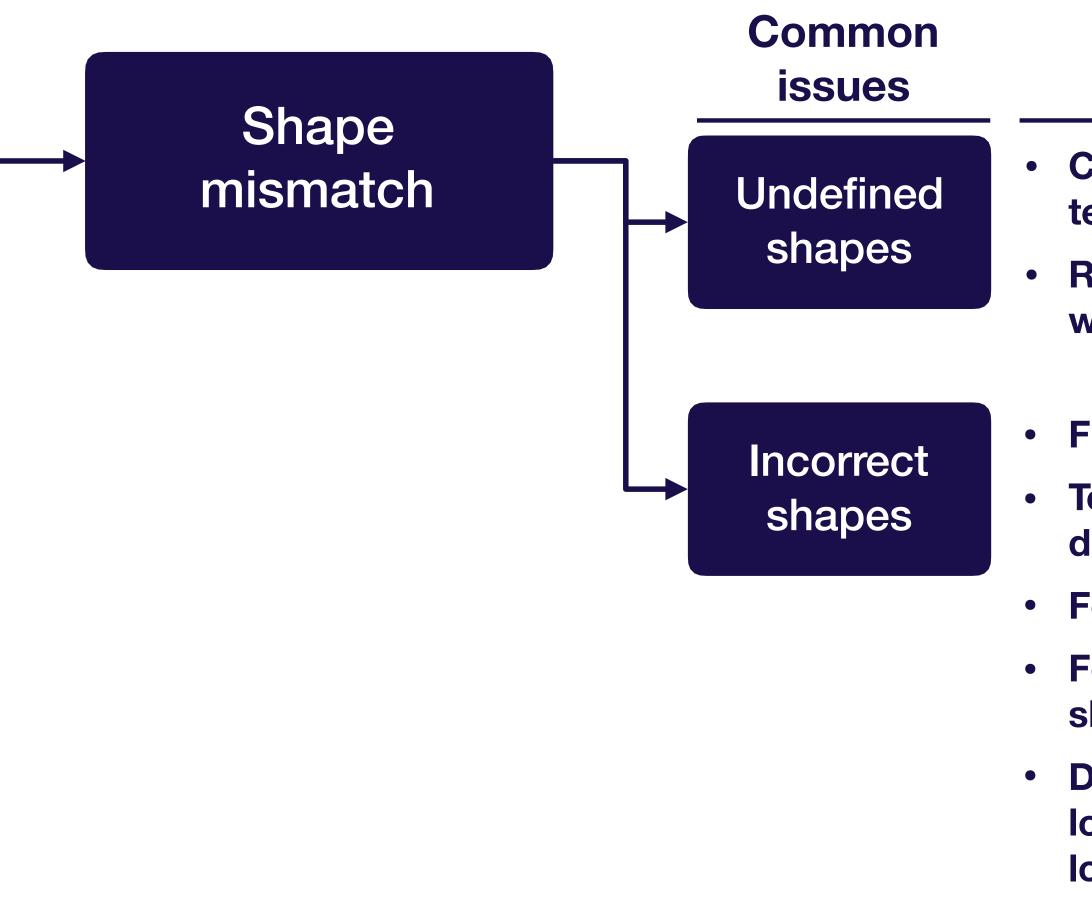
Troubleshooting - debug

Full Stack Deep Learning

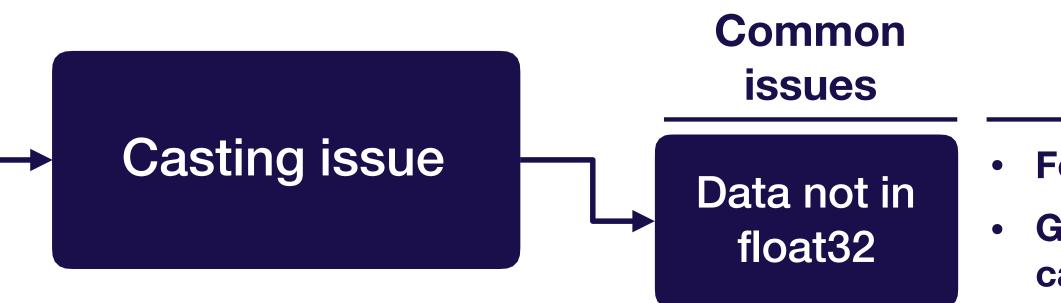
Recommended resolution

Step through model creation and inference in a debugger

- **Scale back memory intensive** operations one-by-one
- Standard debugging toolkit (Stack **Overflow + interactive debugger)**

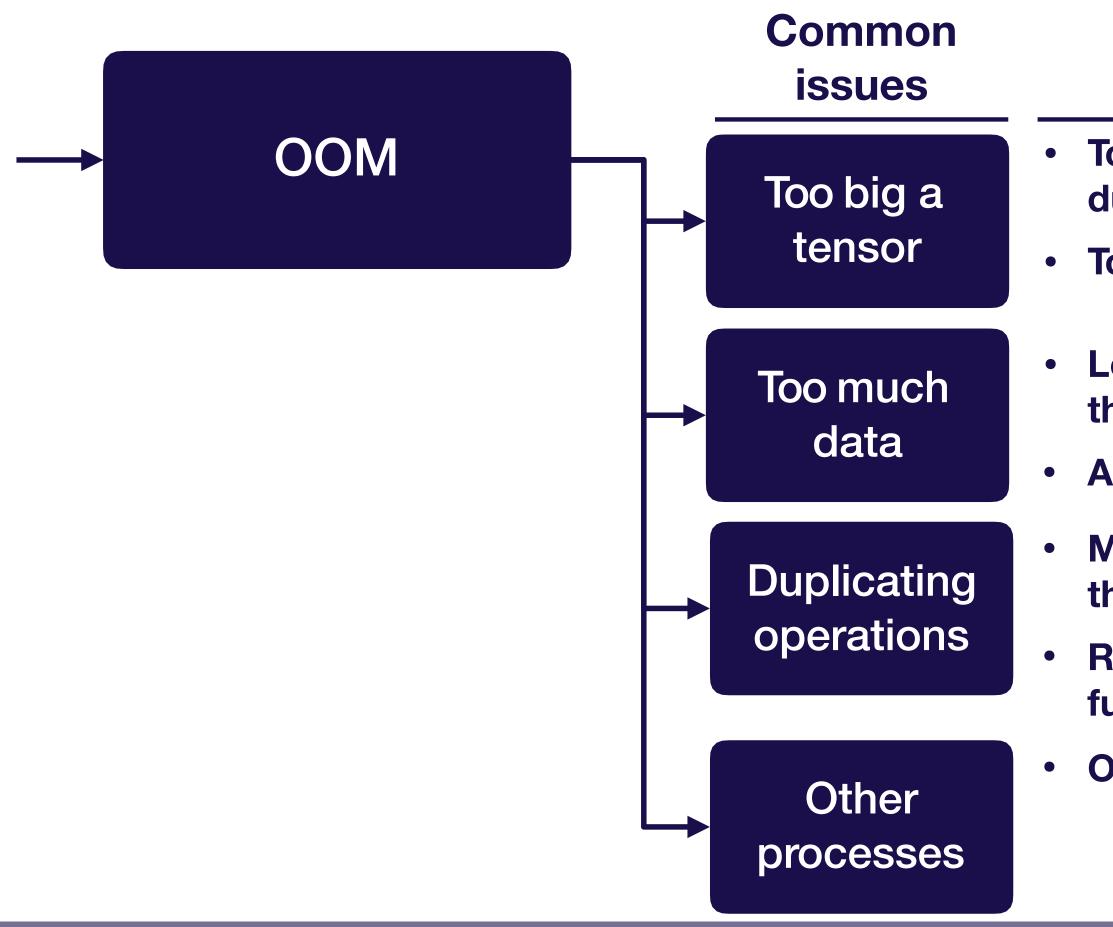


- Confusing tensor.shape, tf.shape(tensor), tensor.get_shape()
- **Reshaping things to a shape of type Tensor (e.g.,** when loading data from a file)
- Flipped dimensions when using tf.reshape(...)
- Took sum, average, or softmax over wrong dimension
- **Forgot to flatten after conv layers**
- Forgot to get rid of extra "1" dimensions (e.g., if shape is (None, 1, 1, 4)
- Data stored on disk in a different dtype than loaded (e.g., stored a float64 numpy array, and loaded it as a float32)



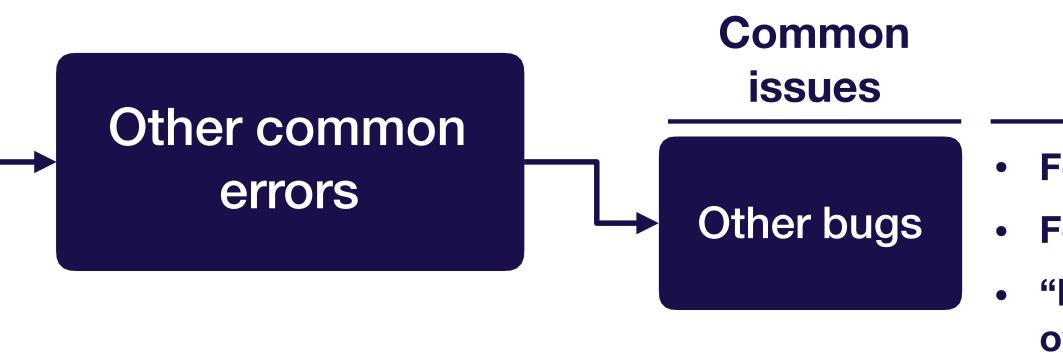
Full Stack Deep Learning

- Forgot to cast images from uint8 to float32
 - Generated data using numpy in float64, forgot to cast to float32



Full Stack Deep Learning

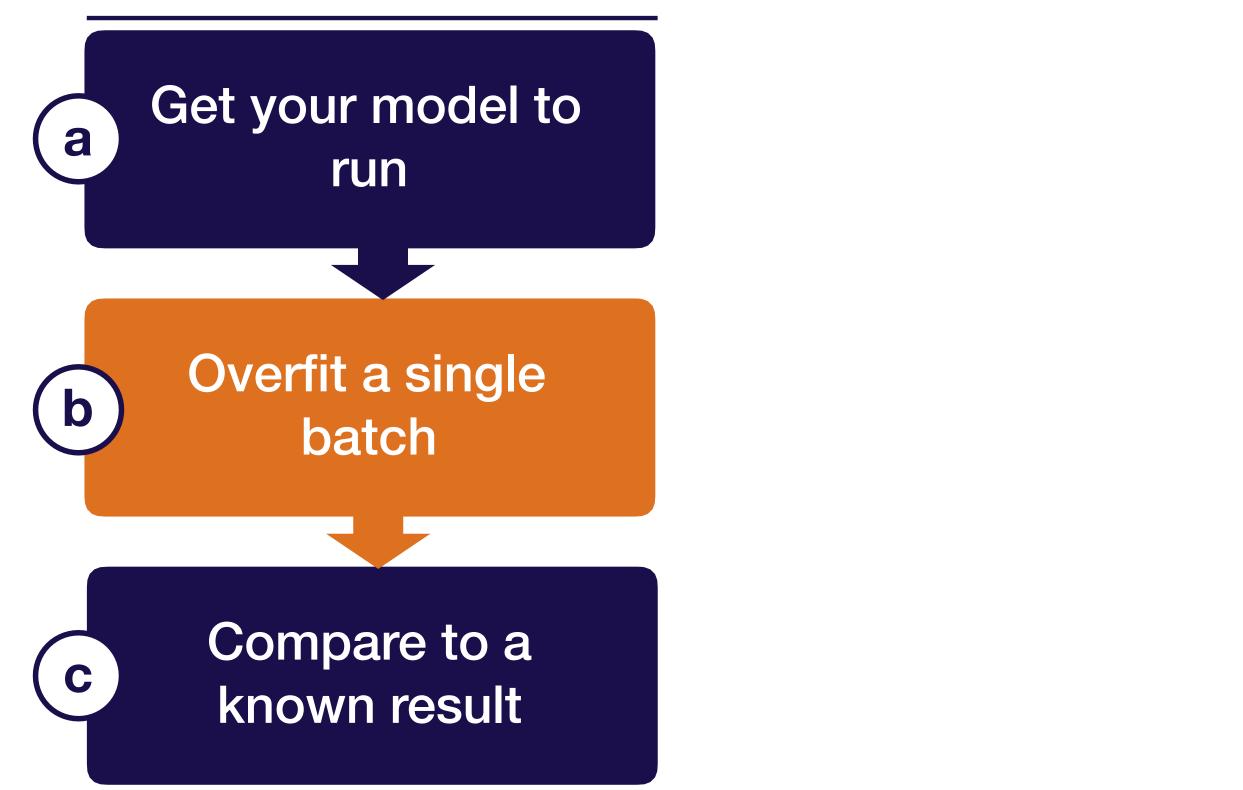
- Too large a batch size for your model (e.g., during evaluation)
- **Too large fully connected layers**
- Loading too large a dataset into memory, rather than using an input queue
- Allocating too large a buffer for dataset creation
- Memory leak due to creating multiple models in the same session
- **Repeatedly creating an operation (e.g., in a** function that gets called over and over again)
- Other processes running on your GPU

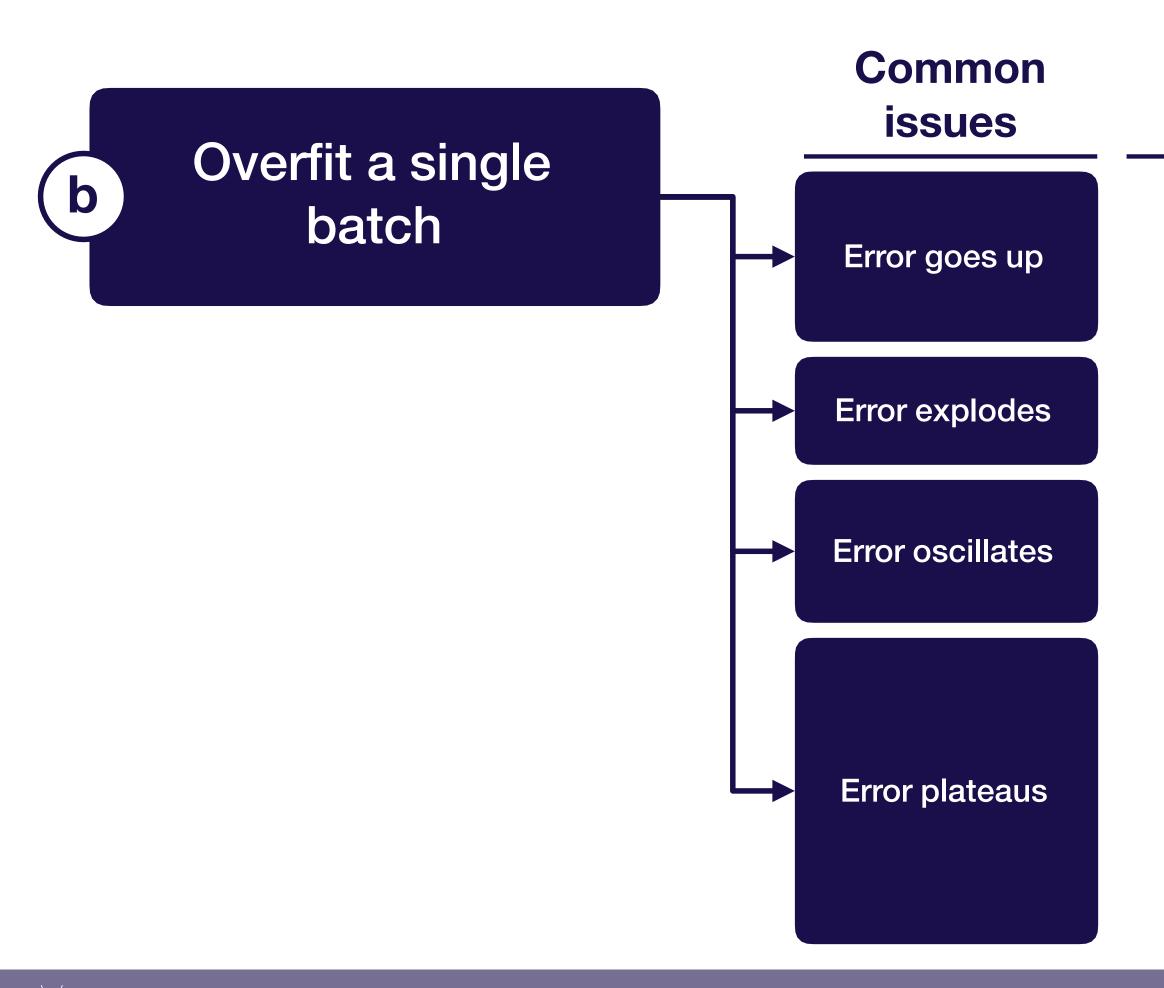


Troubleshooting - debug

Full Stack Deep Learning

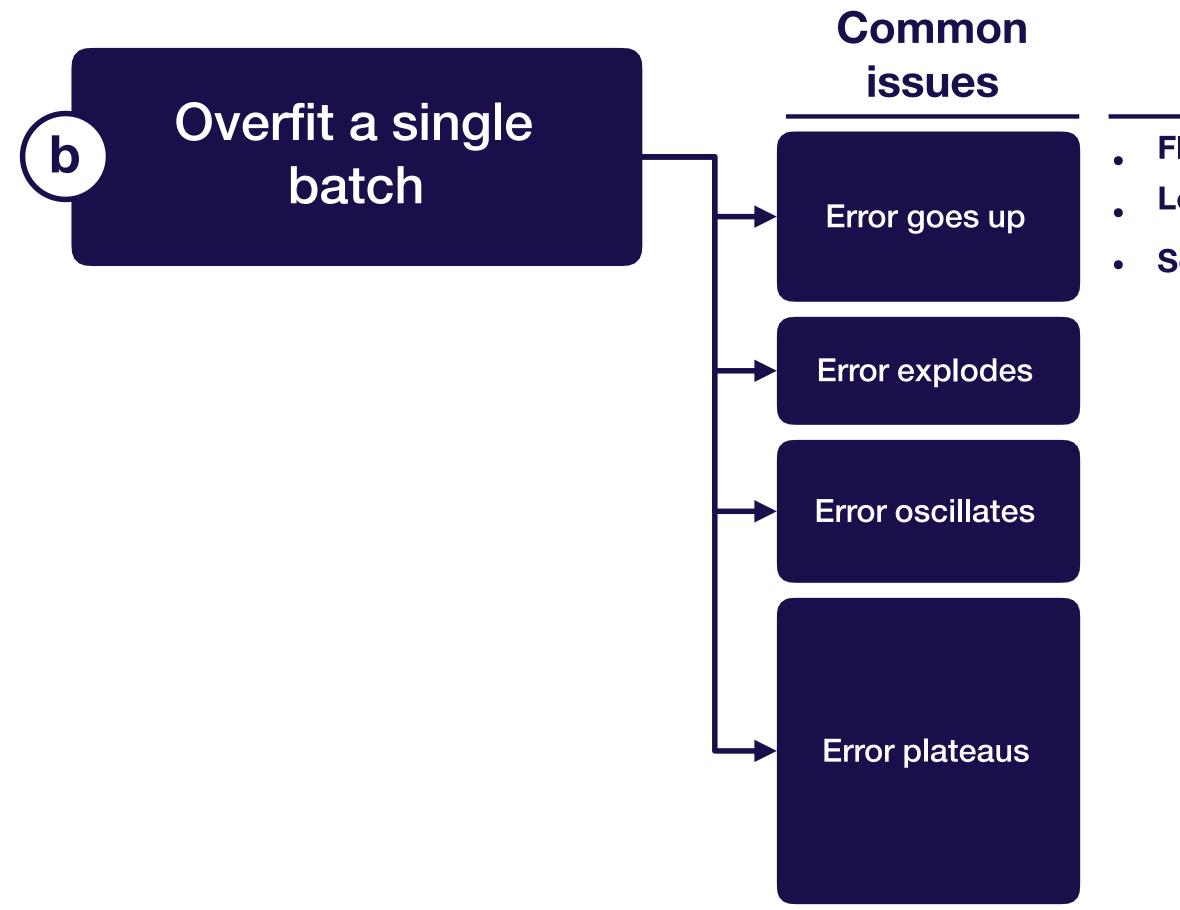
- Forgot to initialize variables
 - Forgot to turn off bias when using batch norm
 - "Fetch argument has invalid type" usually you overwrote one of your ops with an output during training





Troubleshooting - debug

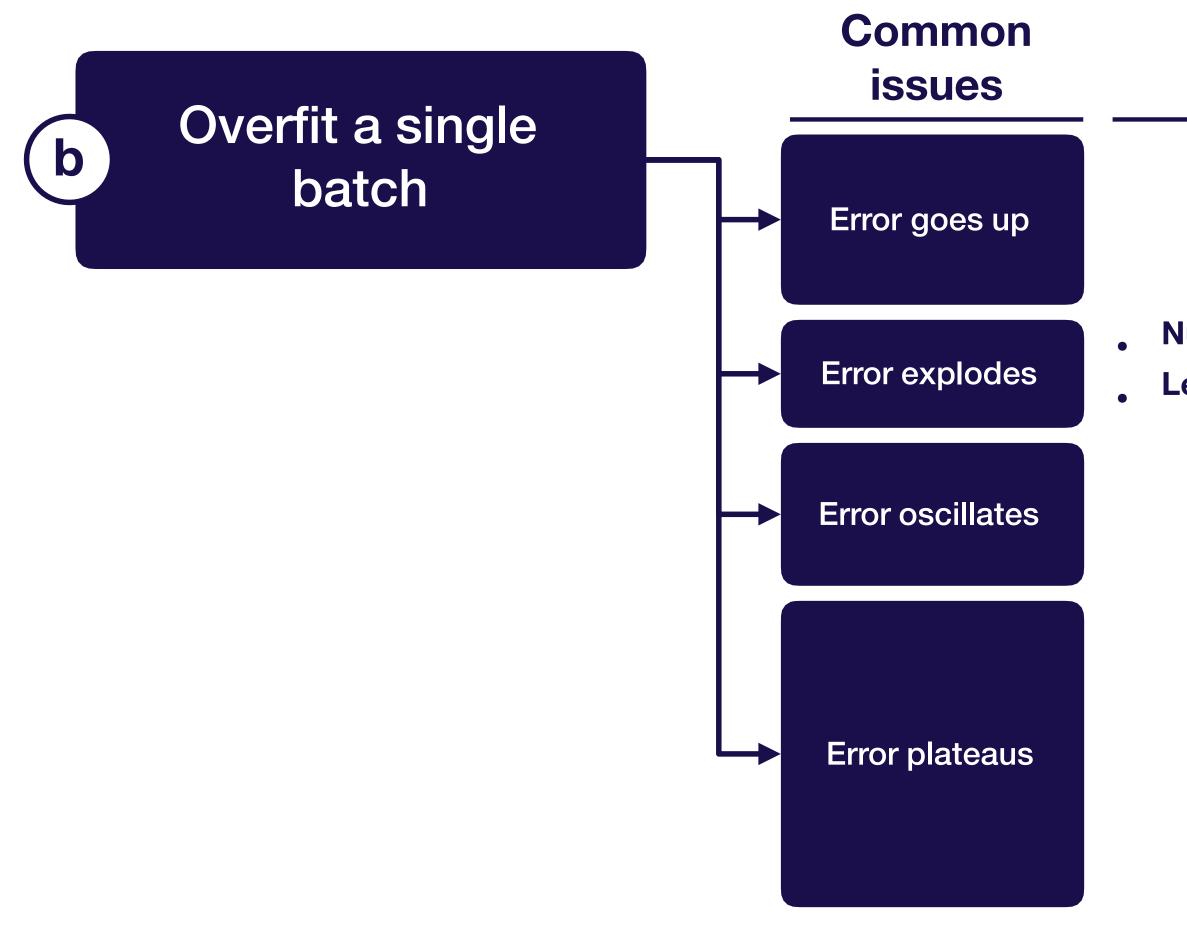
Full Stack Deep Learning



Troubleshooting - debug

Full Stack Deep Learning

- Flipped the sign of the loss function / gradient
- Learning rate too high
- Softmax taken over wrong dimension

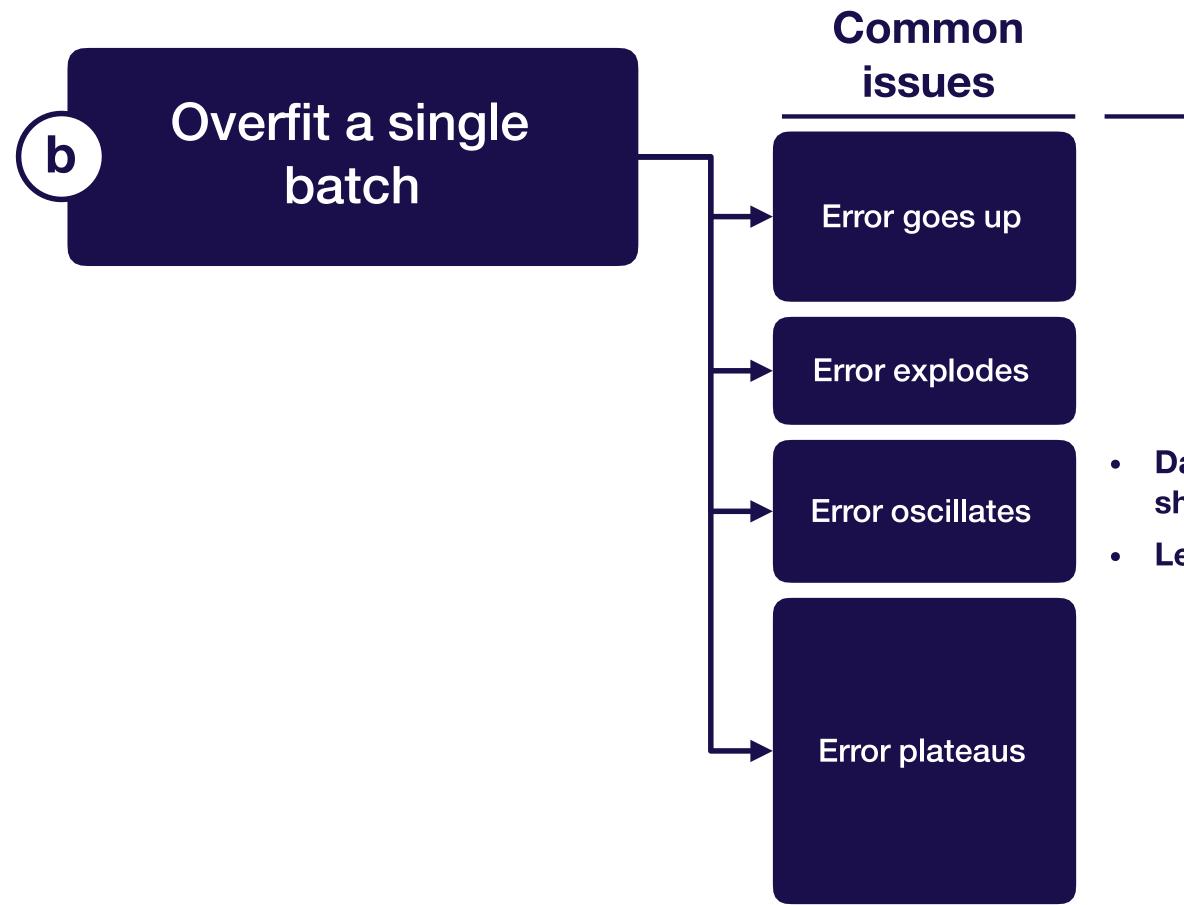


Troubleshooting - debug

Full Stack Deep Learning

Most common causes

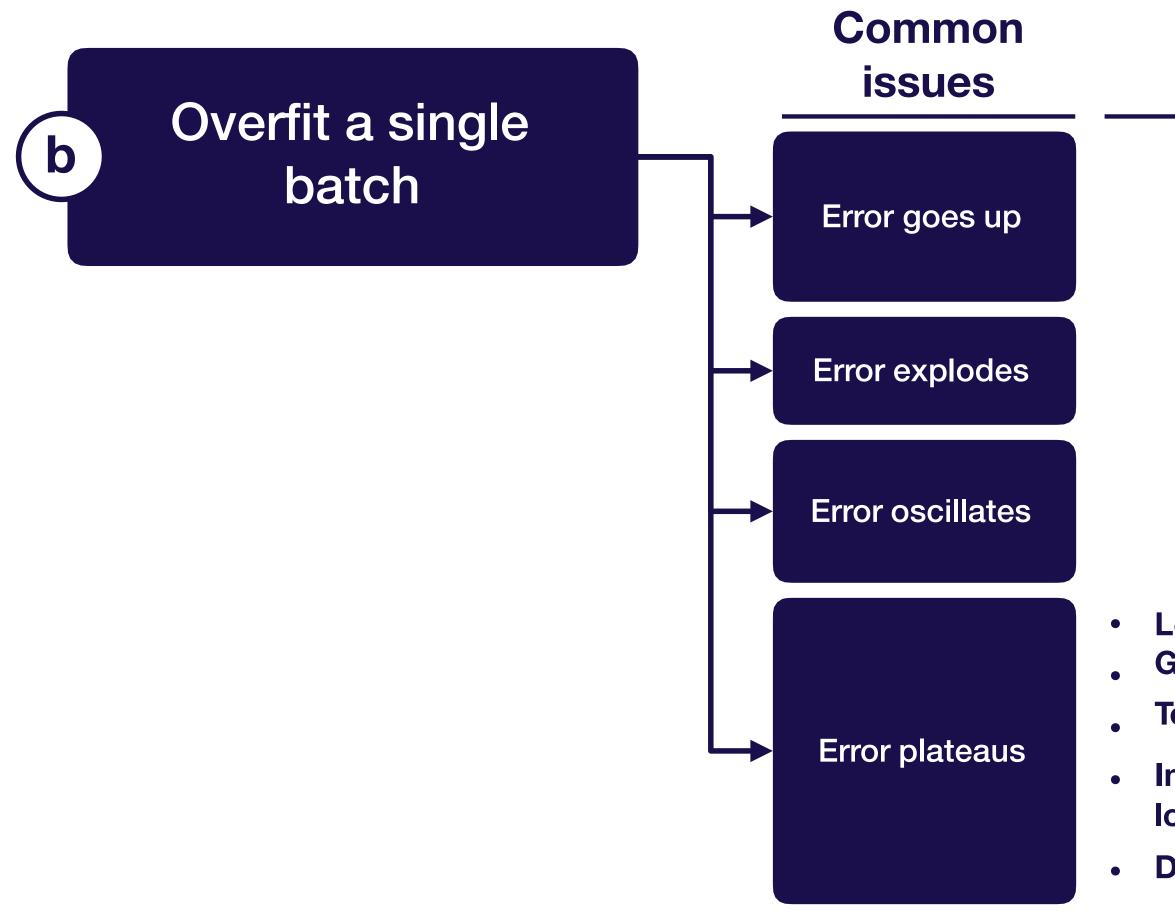
Numerical issue. Check all exp, log, and div operations Learning rate too high



Full Stack Deep Learning

Most common causes

Data or labels corrupted (e.g., zeroed, incorrectly shuffled, or preprocessed incorrectly) Learning rate too high



Troubleshooting - debug

Full Stack Deep Learning

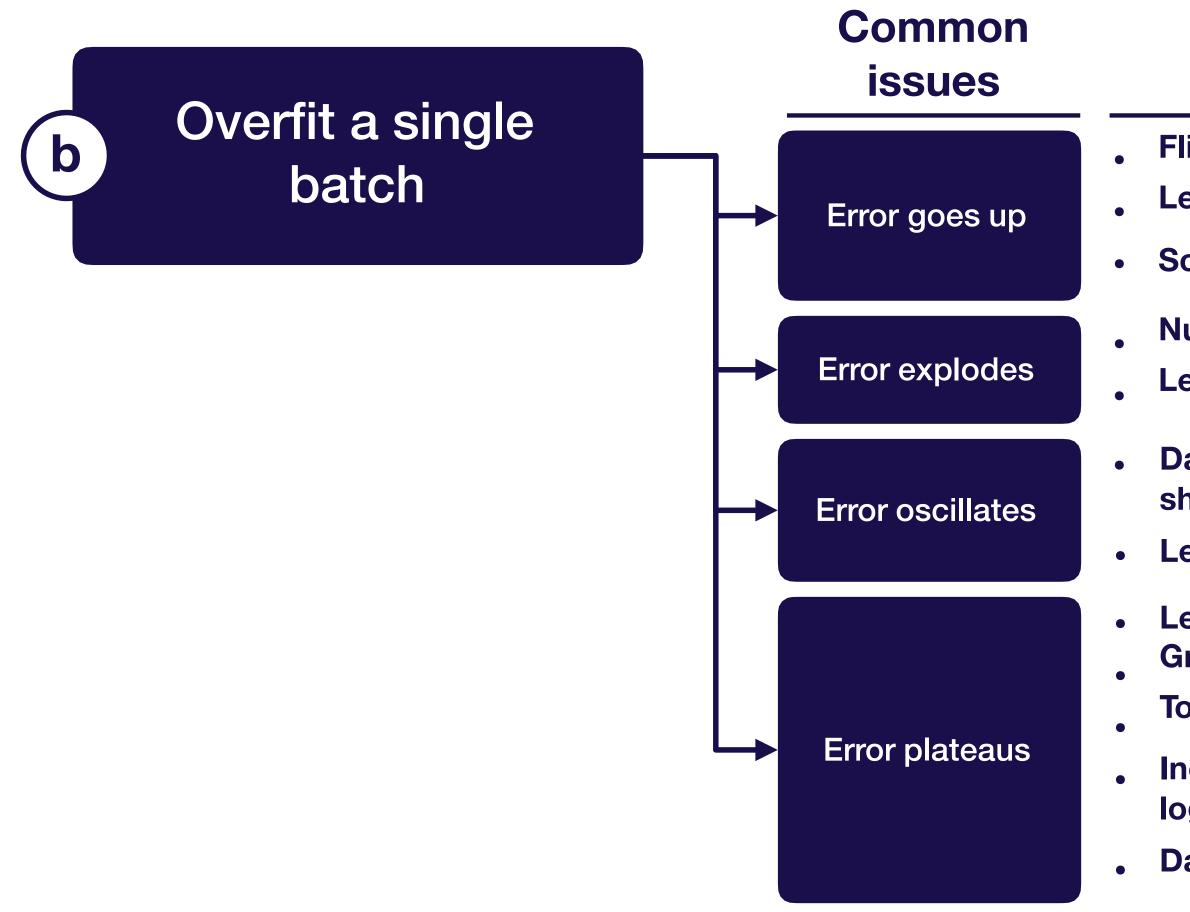
Most common causes

Learning rate too low **Gradients not flowing through the whole model**

Too much regularization

Incorrect input to loss function (e.g., softmax instead of logits, accidentally add ReLU on output)

Data or labels corrupted

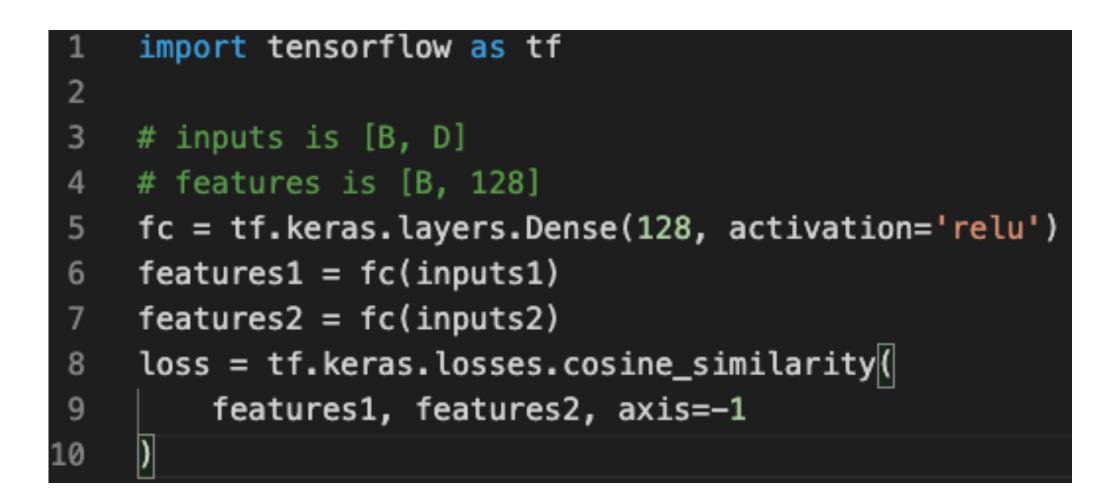


Full Stack Deep Learning

Troubleshooting - debug

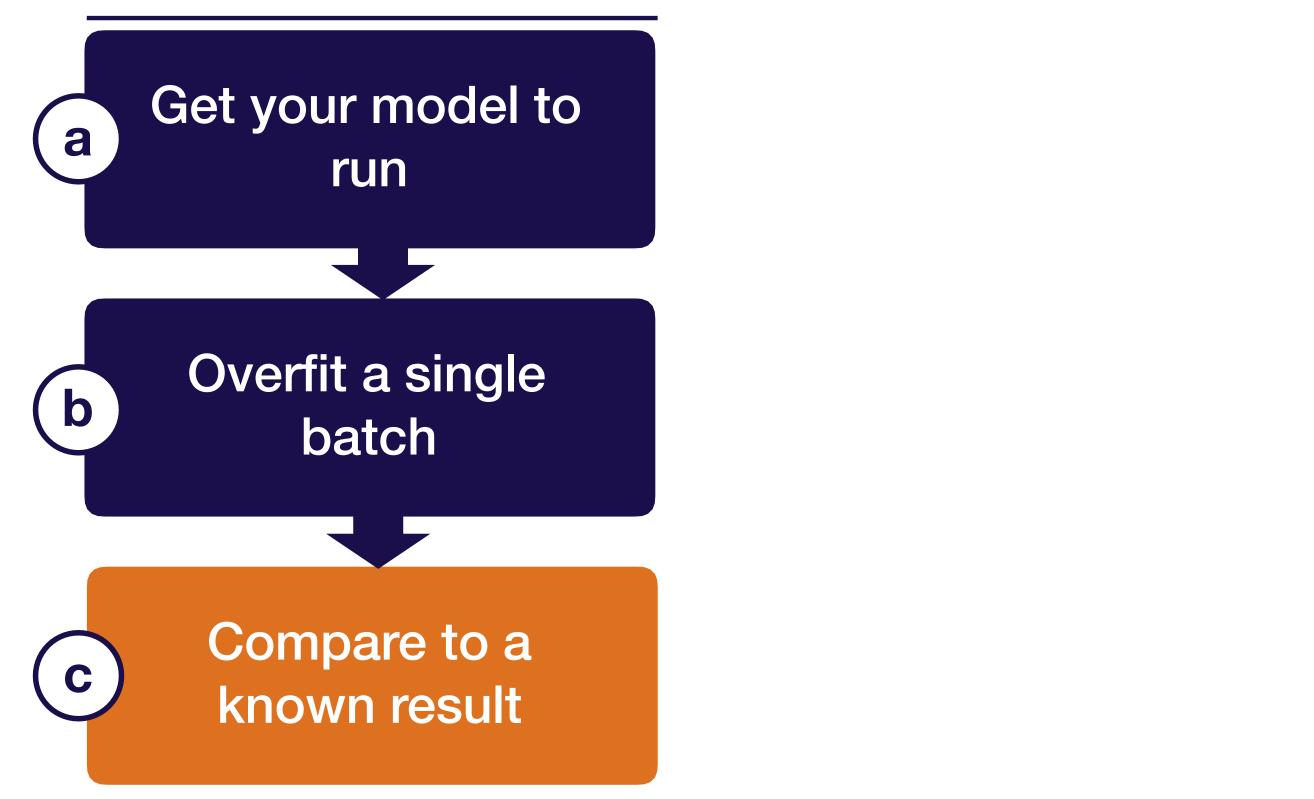
- Flipped the sign of the loss function / gradient
- Learning rate too high
- Softmax taken over wrong dimension
- Numerical issue. Check all exp, log, and div operations Learning rate too high
- Data or labels corrupted (e.g., zeroed or incorrectly shuffled)
- Learning rate too high
- Learning rate too low Gradients not flowing through the whole model
- **Too much regularization**
- Incorrect input to loss function (e.g., softmax instead of logits)
- **Data or labels corrupted**

Example





Troubleshooting - overview



Troubleshooting - debug

Hierarchy of known results

More useful

Official model implementation evaluated on similar dataset to yours

You can:

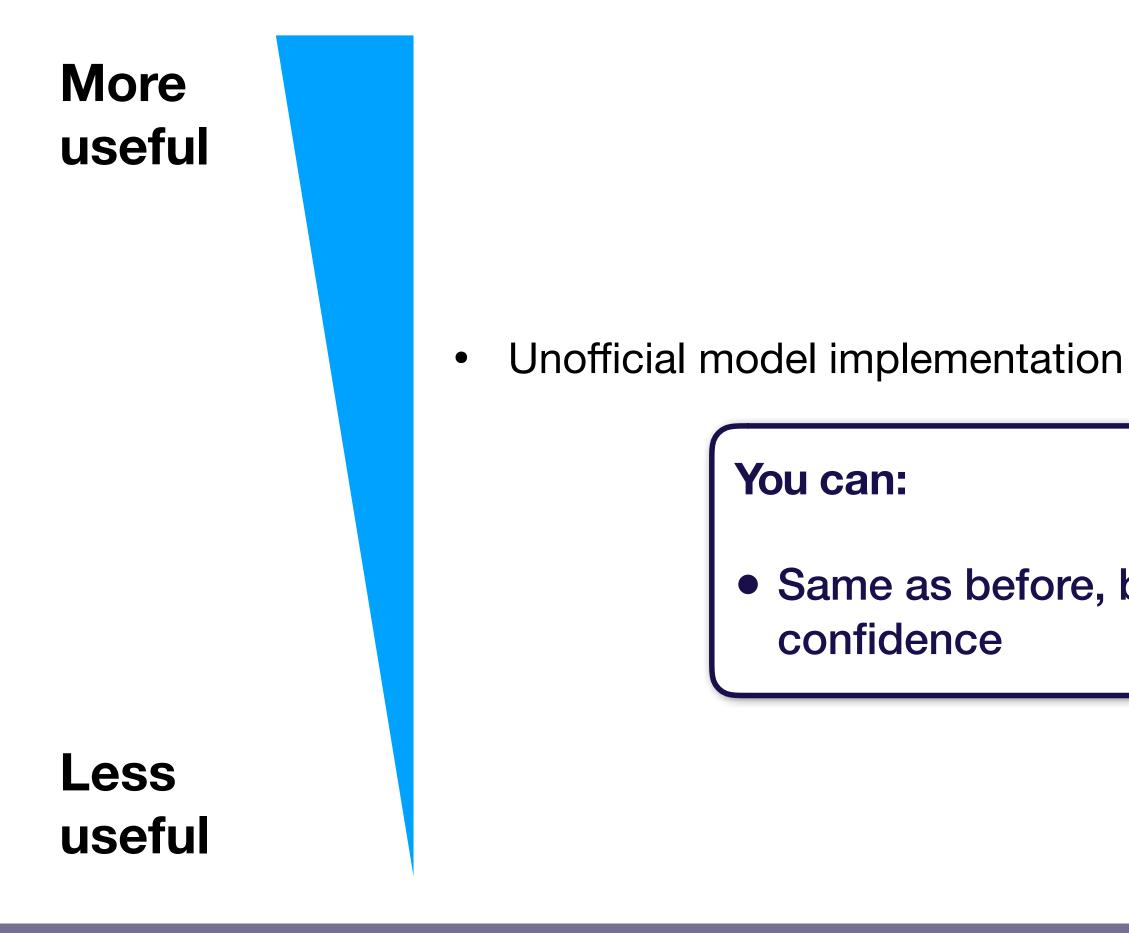
- Walk through code line-by-line and ensure you have the same output
- Ensure your performance is up to par with expectations

Less useful

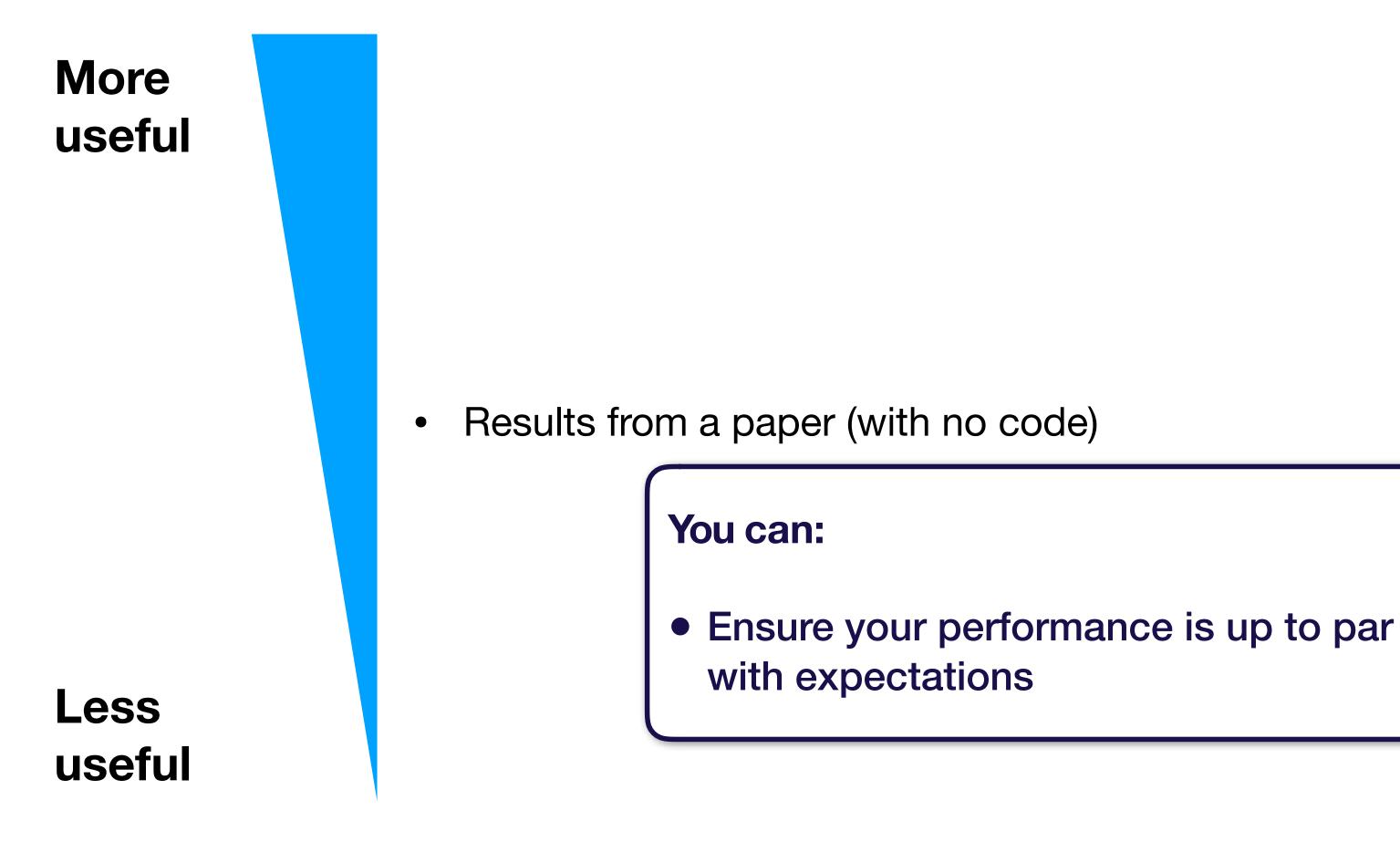
Official model implementation evaluated on benchmark (e.g., MNIST)

You can:

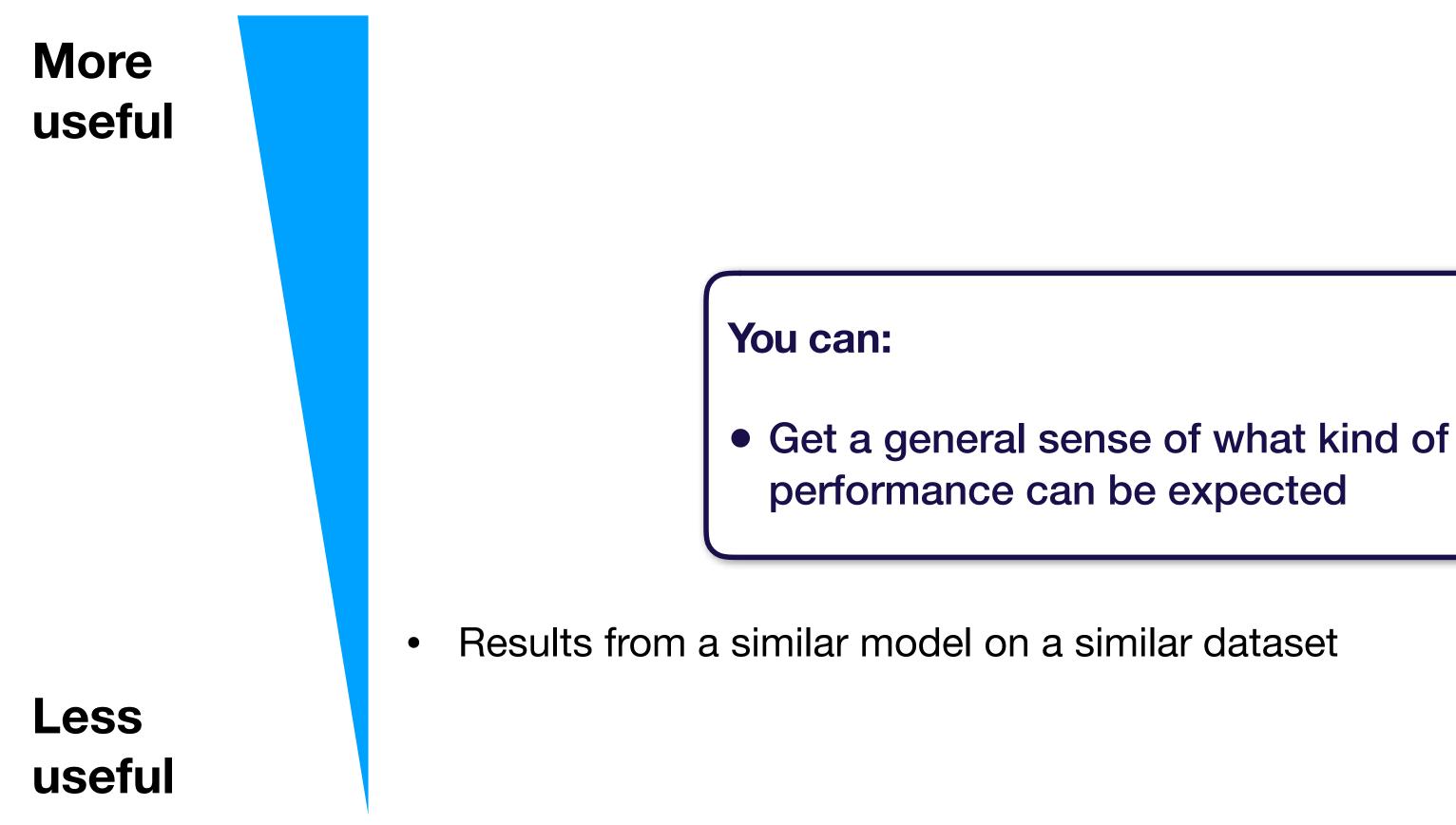
 Walk through code line-by-line and ensure you have the same output

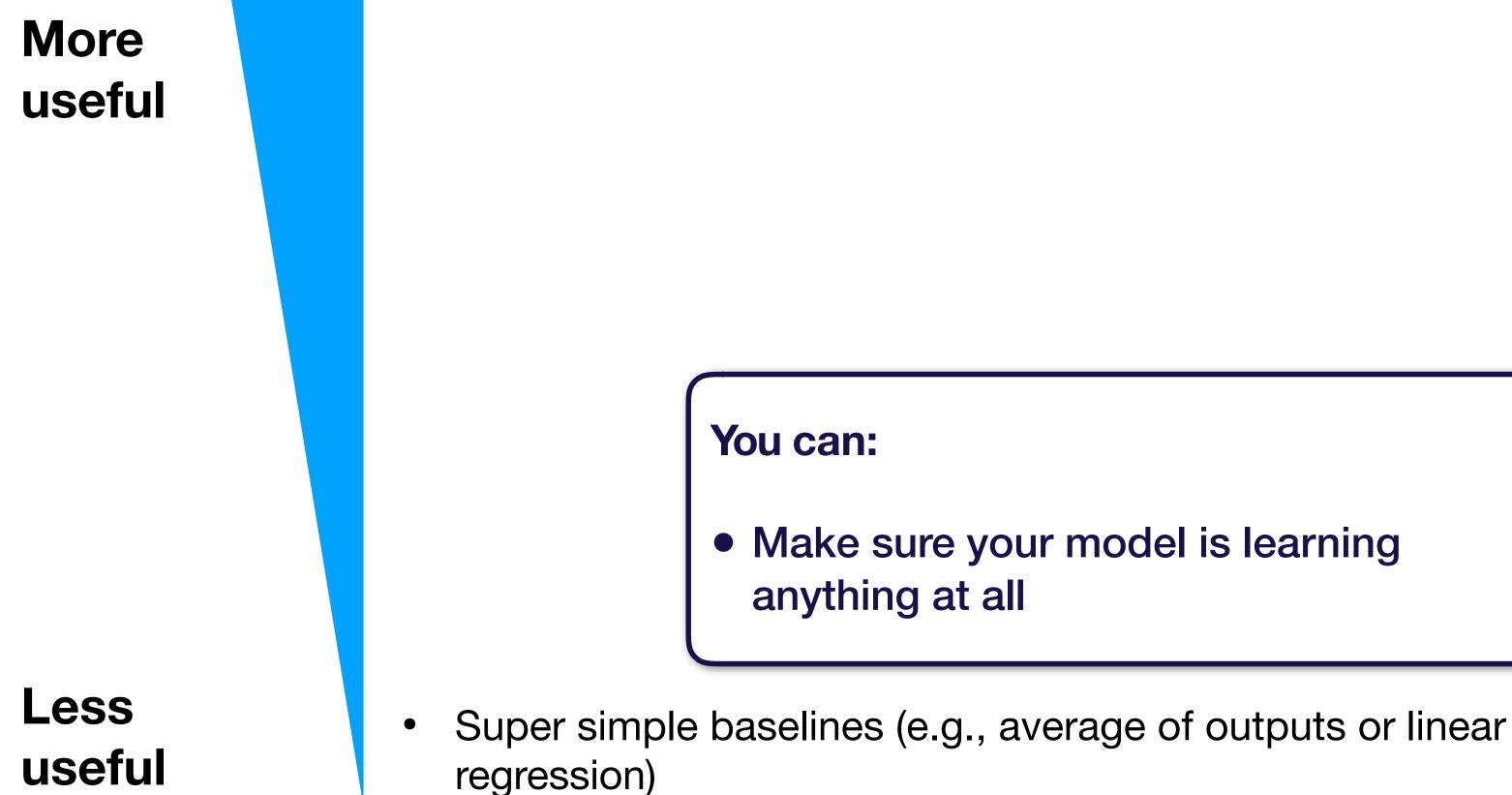


• Same as before, but with lower



- simpler setting
- Results from your model on a benchmark dataset (e.g., MNIST)



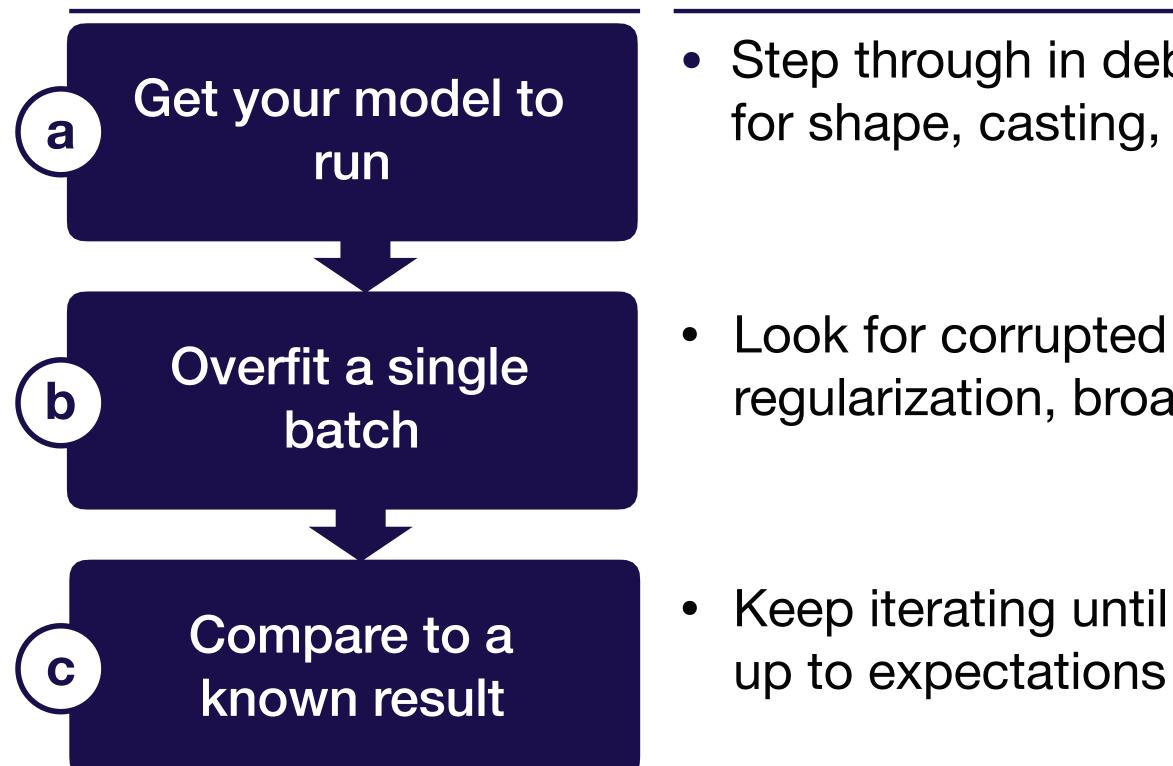


More useful

Less useful

- Official model implementation evaluated on similar dataset to yours
- Official model implementation evaluated on benchmark (e.g., MNIST)
- Unofficial model implementation
- Results from the paper (with no code)
- Results from your model on a benchmark dataset (e.g., MNIST)
- Results from a similar model on a similar dataset
- Super simple baselines (e.g., average of outputs or linear regression)

Summary: how to implement & debug



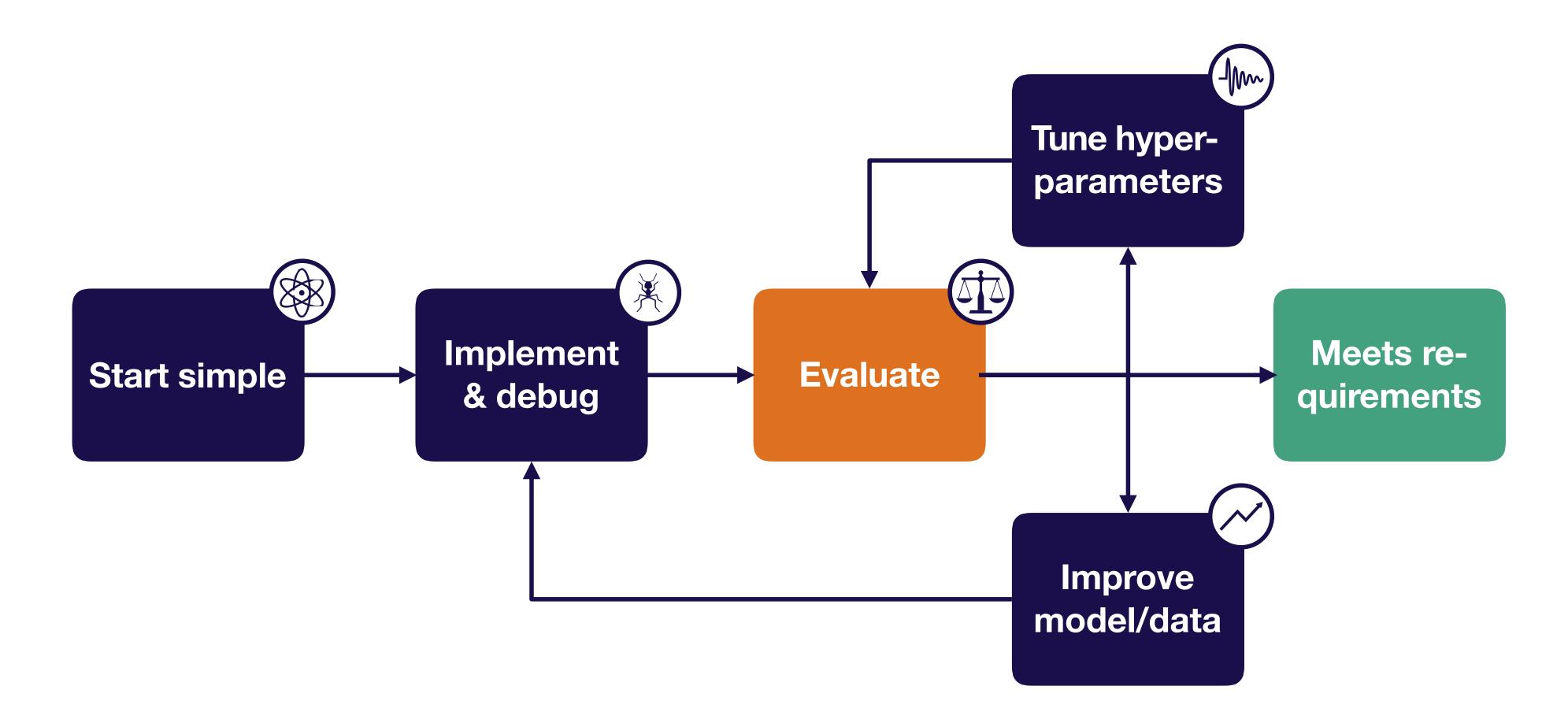
Summary

• Step through in debugger & watch out for shape, casting, and OOM errors

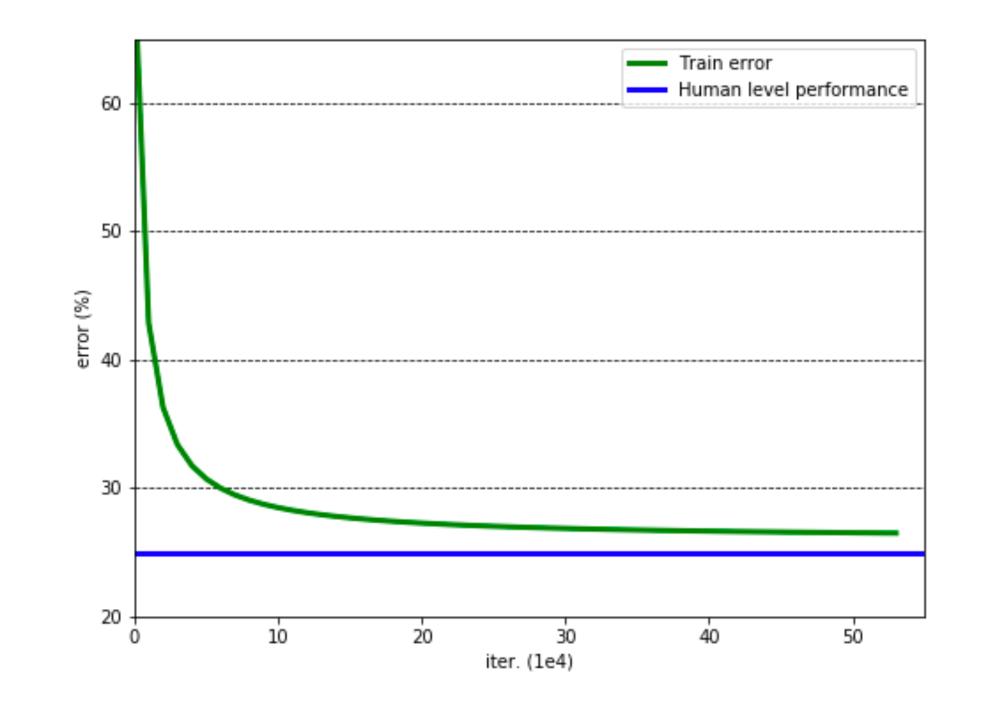
Look for corrupted data, overregularization, broadcasting errors

• Keep iterating until model performs

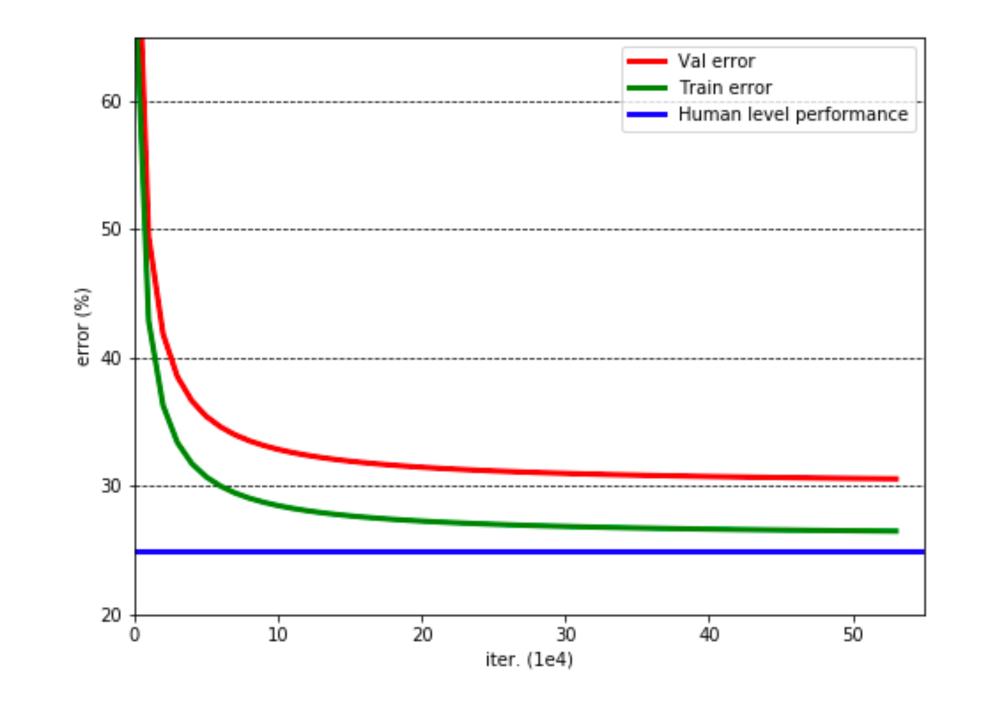
Strategy for DL troubleshooting



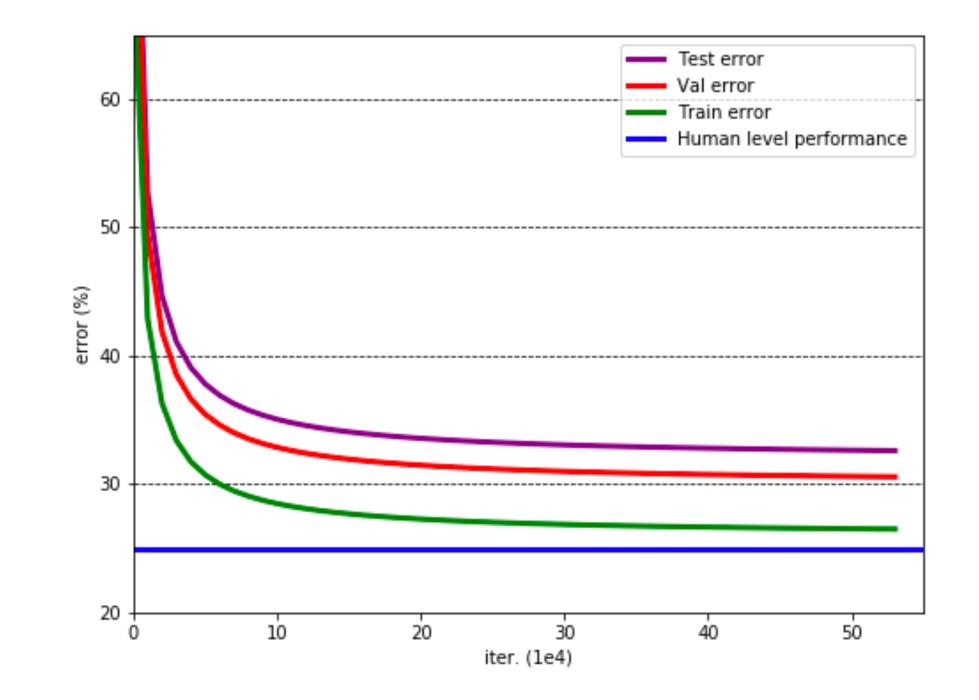
Troubleshooting - evaluate



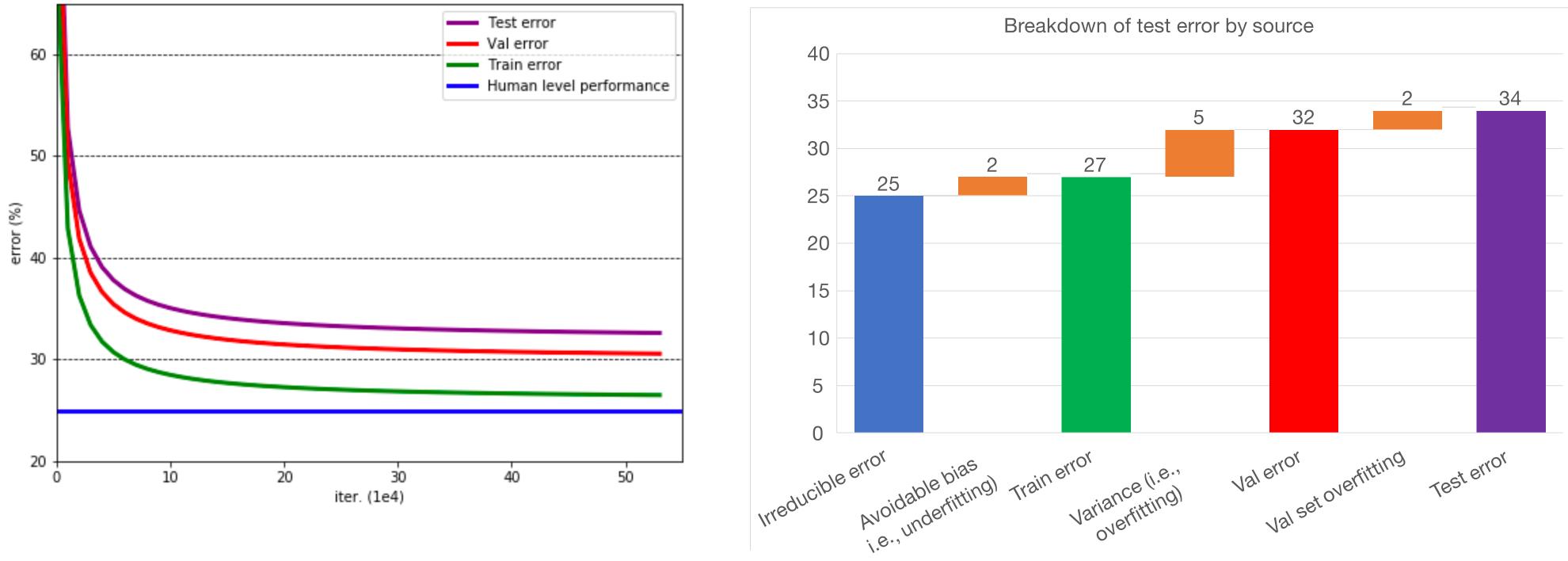
Troubleshooting - evaluate Δ



Troubleshooting - evaluate Δ



Troubleshooting - evaluate Δ



 $\Box \Box$ **Troubleshooting - evaluate**

- Test error = irreducible error + bias + variance + val overfitting
- This assumes train, val, and test all come from the same distribution. What if not?

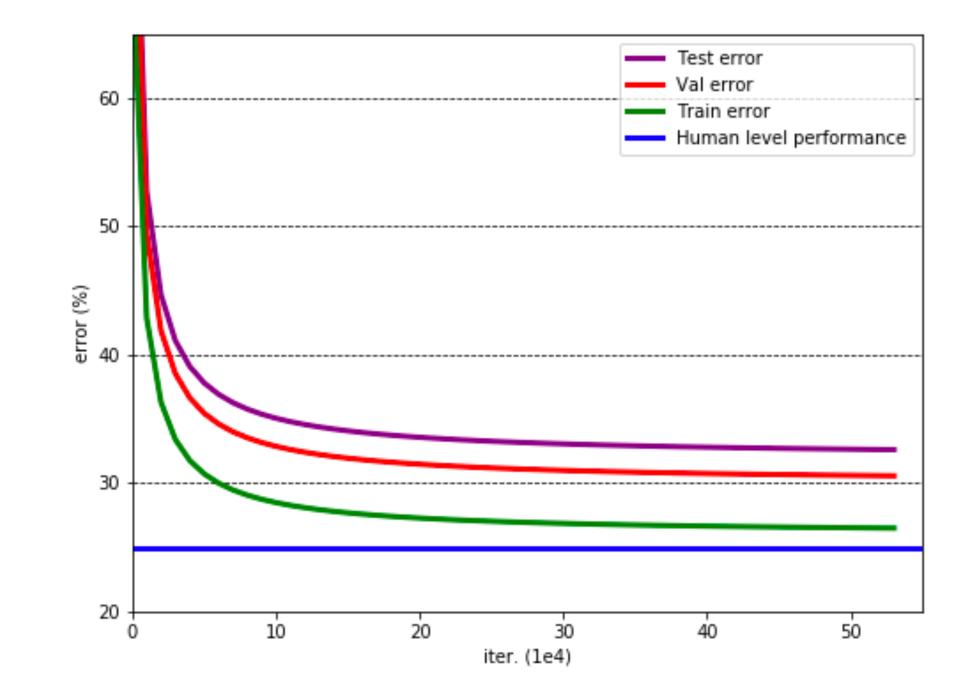
Handling distribution shift

Train data

Full Stack Deep Learning

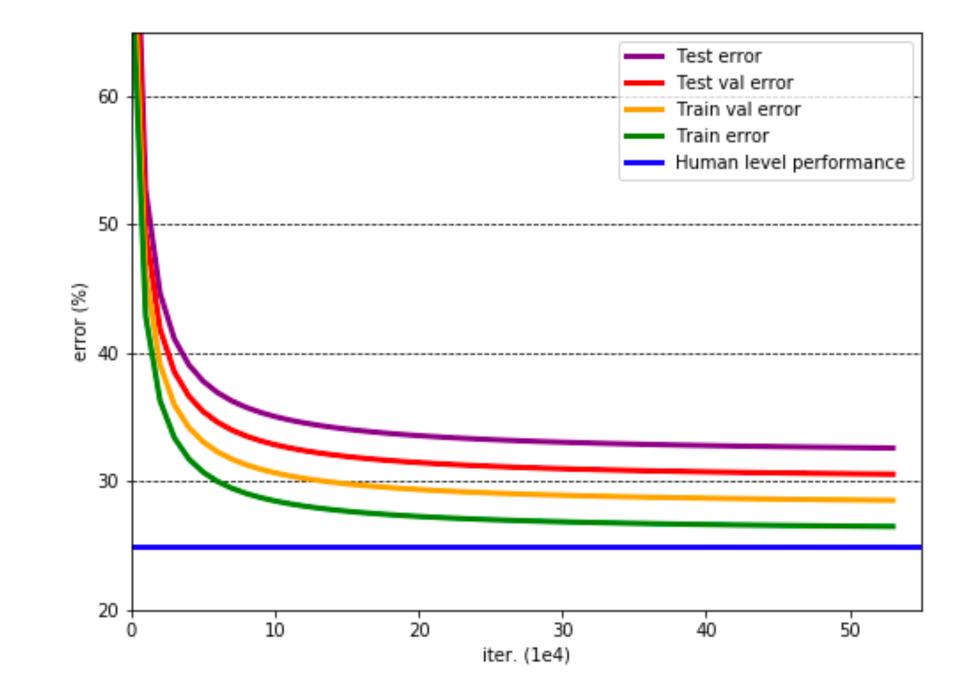
Test data

The bias-variance tradeoff



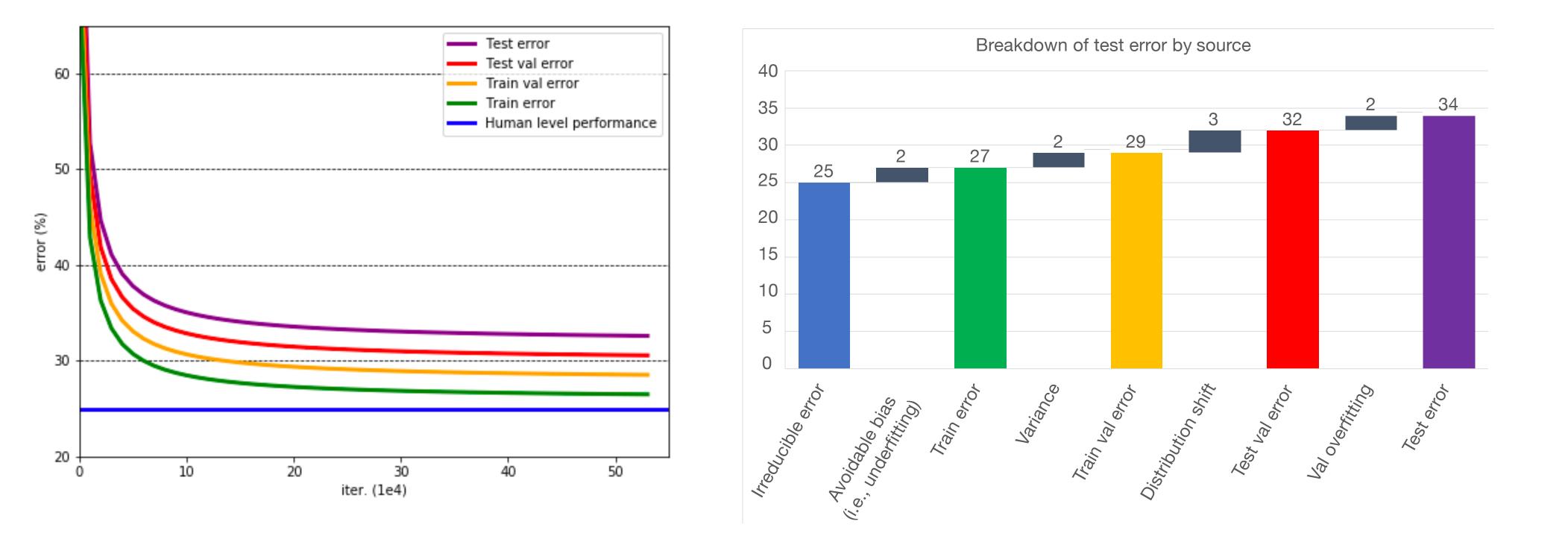
Troubleshooting - evaluate

Bias-variance with distribution shift

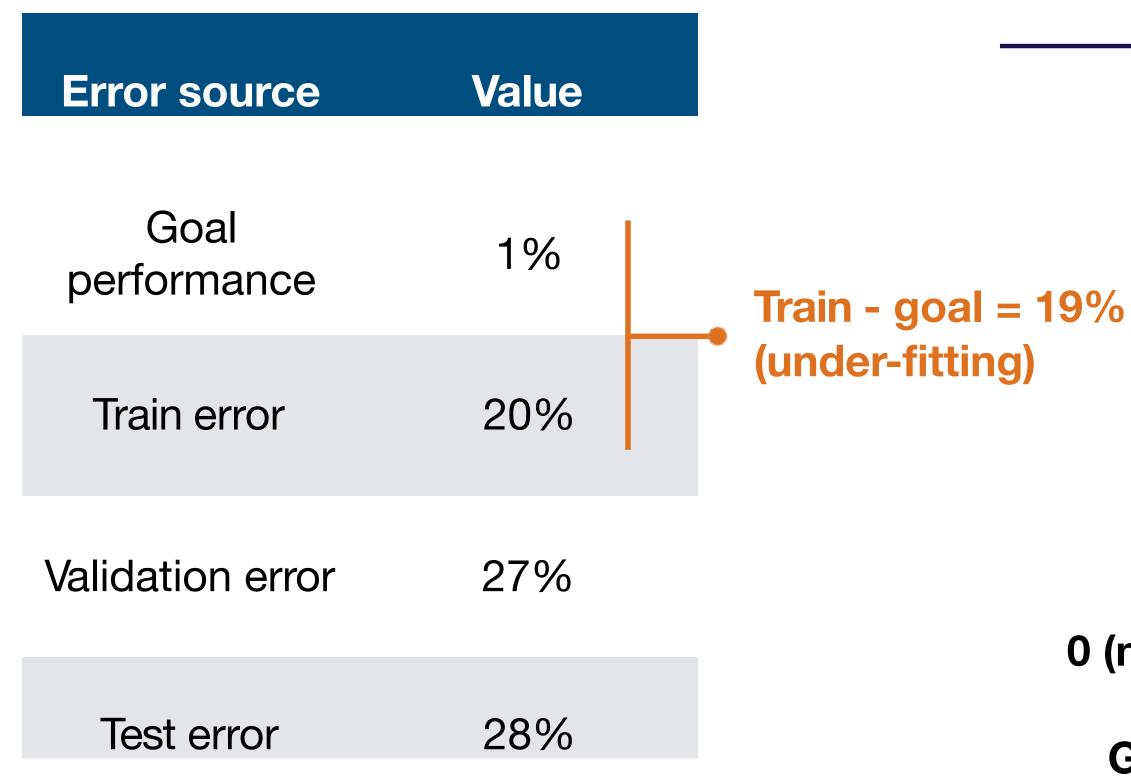


Troubleshooting - evaluate Δ

Bias-variance with distribution shift



Troubleshooting - evaluate

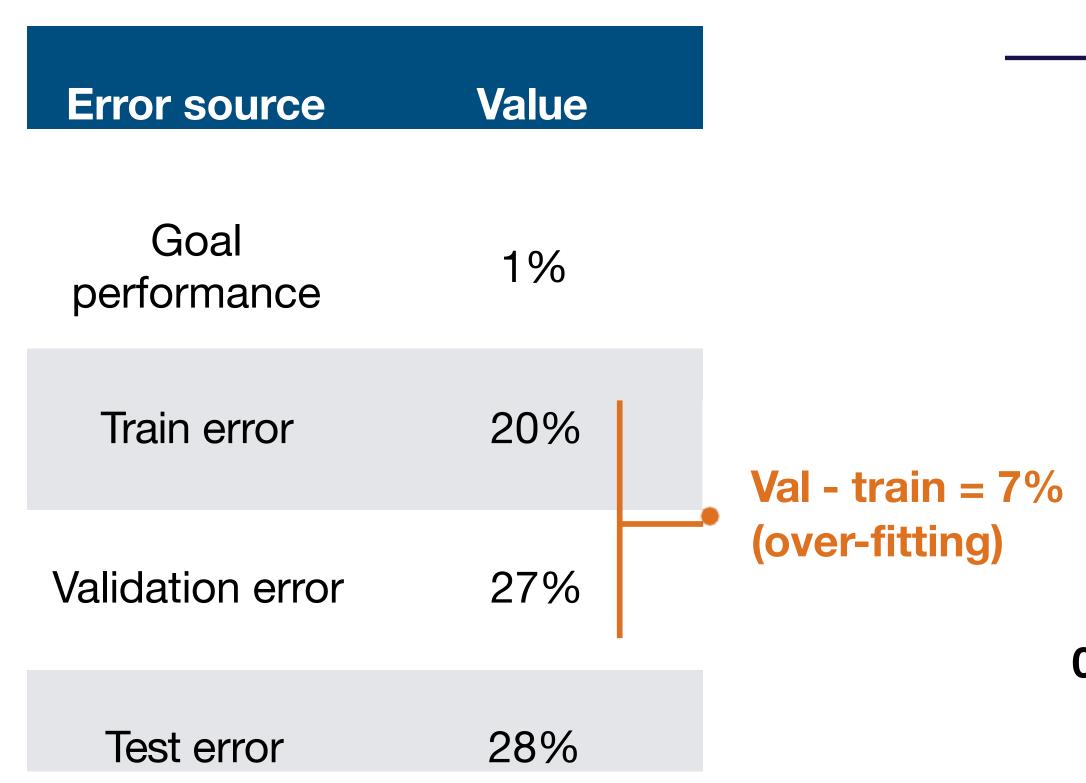


Troubleshooting - evaluate

Full Stack Deep Learning

Running example

0 (no pedestrian) 1 (yes pedestrian)

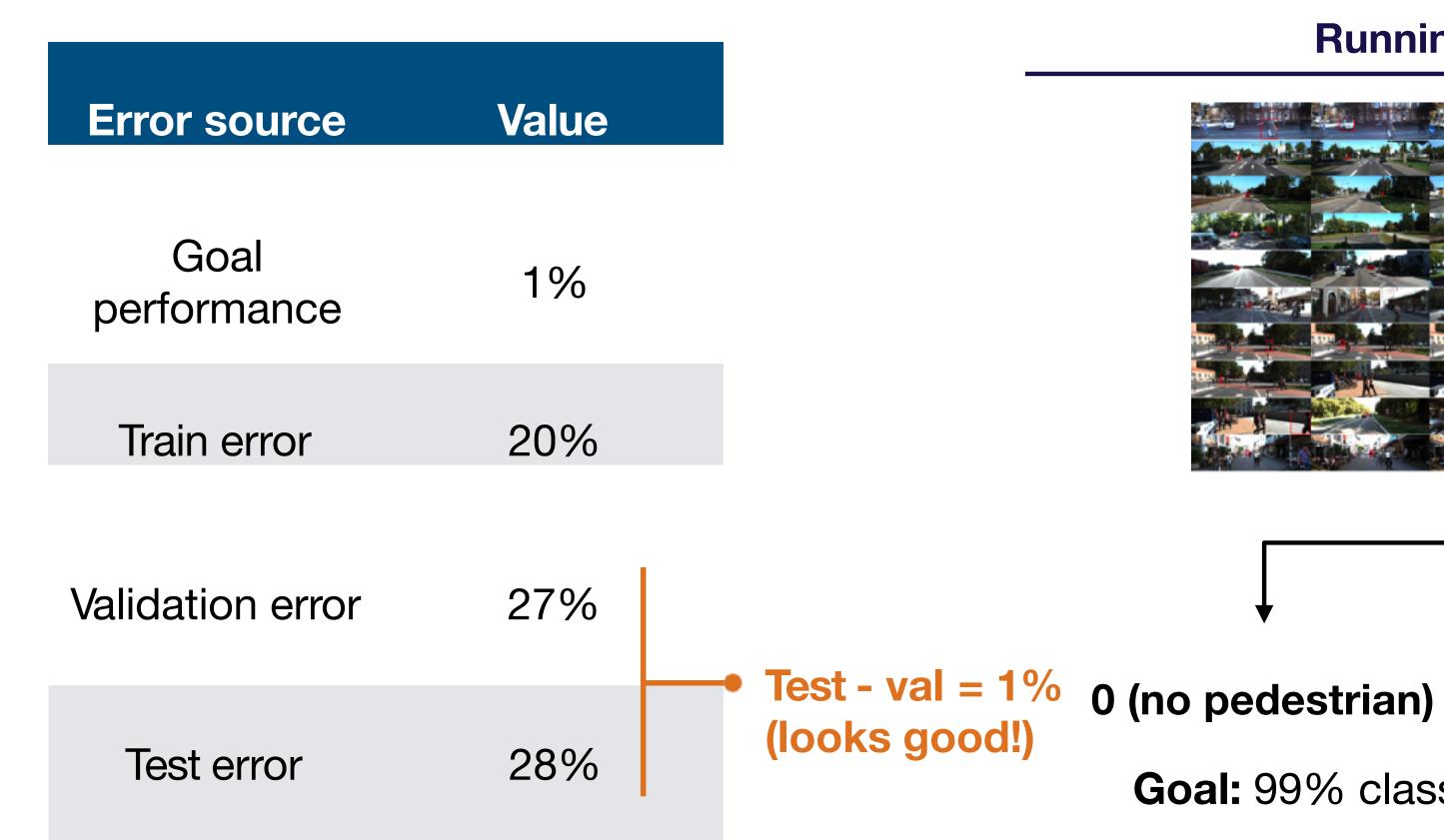


Troubleshooting - evaluate

Full Stack Deep Learning

Running example

0 (no pedestrian) 1 (yes pedestrian)



Troubleshooting - evaluate

Full Stack Deep Learning

Running example

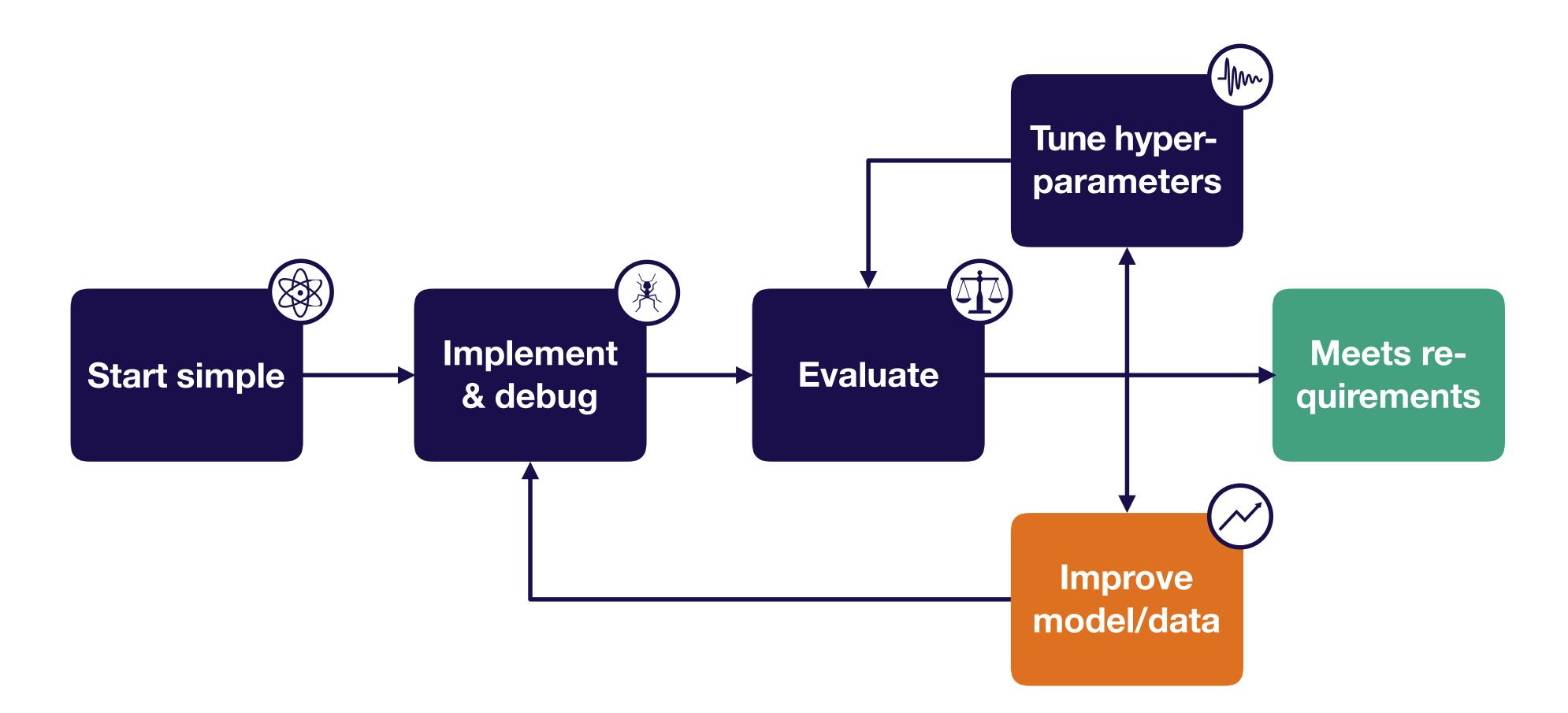
1 (yes pedestrian)

Summary: evaluating model performance

Test error = irreducible error + bias + variance + distribution shift + val overfitting

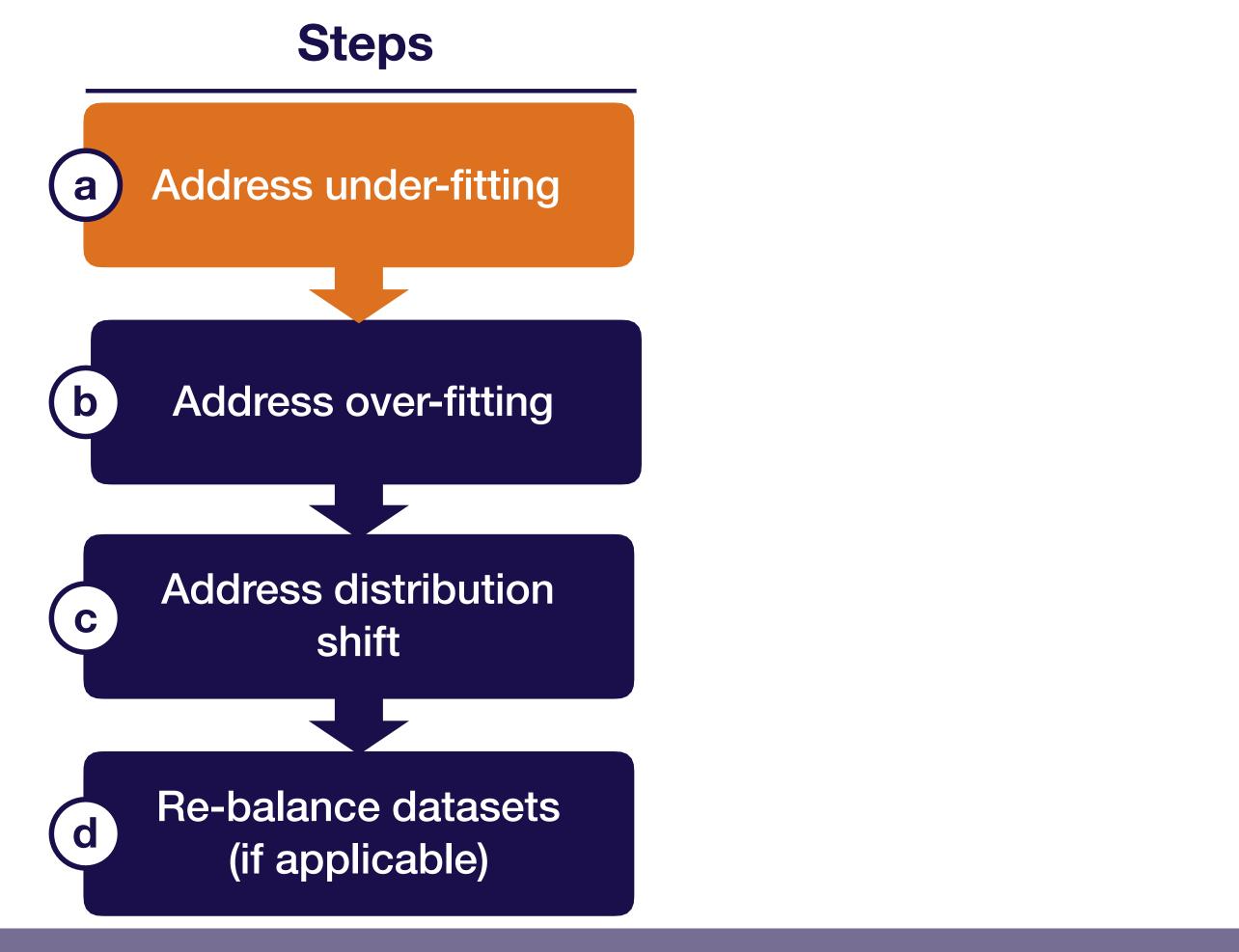
Troubleshooting - evaluate

Strategy for DL troubleshooting



Troubleshooting - improve

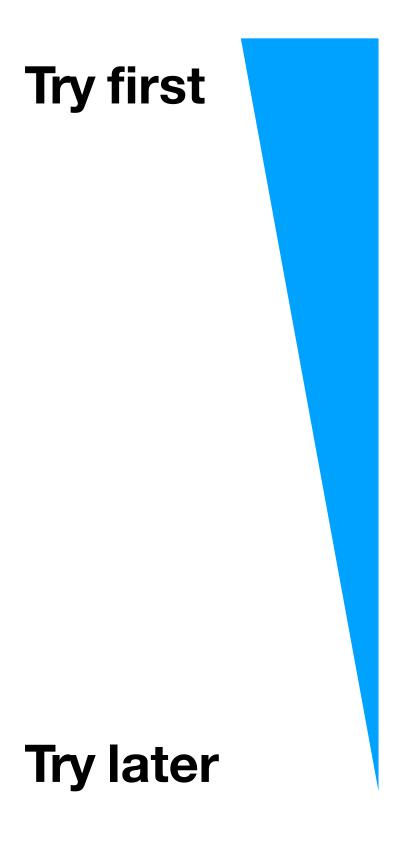
Prioritizing improvements (i.e., applied b-v)



Full Stack Deep Learning

Troubleshooting - improve

Addressing under-fitting (i.e., reducing bias)



- Make your model bigger (i.e., add layers or use A. more units per layer)
- Reduce regularization Β.
- Error analysis
- Choose a different (closer to state-of-the art) D. model architecture (e.g., move from LeNet to ResNet)
- E. Tune hyper-parameters (e.g., learning rate)
- F. Add features

Add more layers to the ConvNet

				•
	Erro	r source	Value	Value
\frown		C		

Goal performance 1% 1%

Train error	20%	7%
Validation error	27%	19%

Test error 28% 20%

Troubleshooting - improve

0 (no pedestrian) 1 (yes pedestrian)

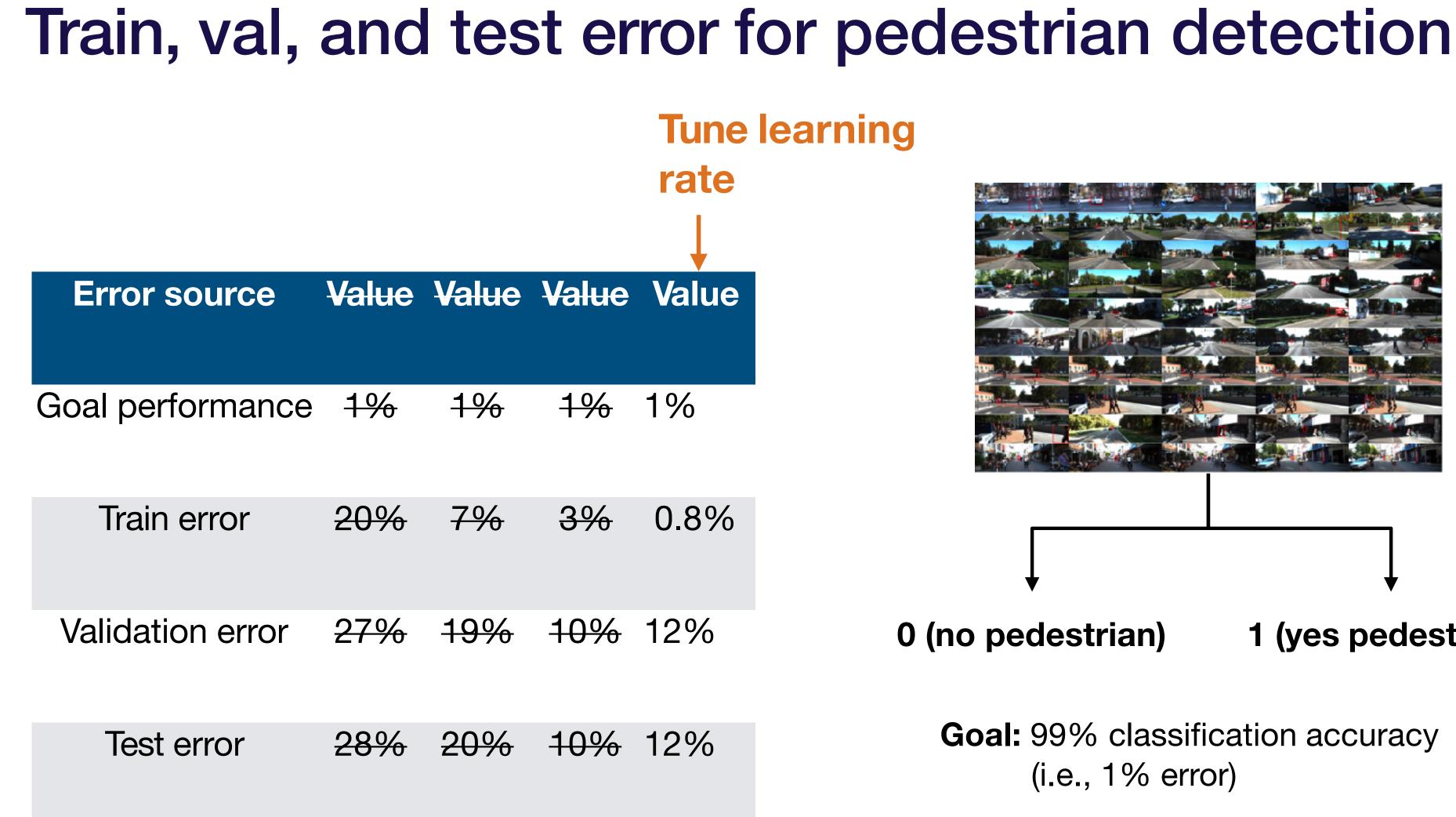
Goal: 99% classification accuracy (i.e., 1% error)

Train, val, and test error for pedestrian detection Switch to **ResNet-101 Value Value** Value **Error source** 1% 1% Goal performance 1% Train error 20% 7% 3% Validation error 27% 19% 10% 0 (no pedestrian) **Goal:** 99% classification accuracy Test error 10% 28% 20% (i.e., 1% error)

Troubleshooting - improve

Full Stack Deep Learning

1 (yes pedestrian)



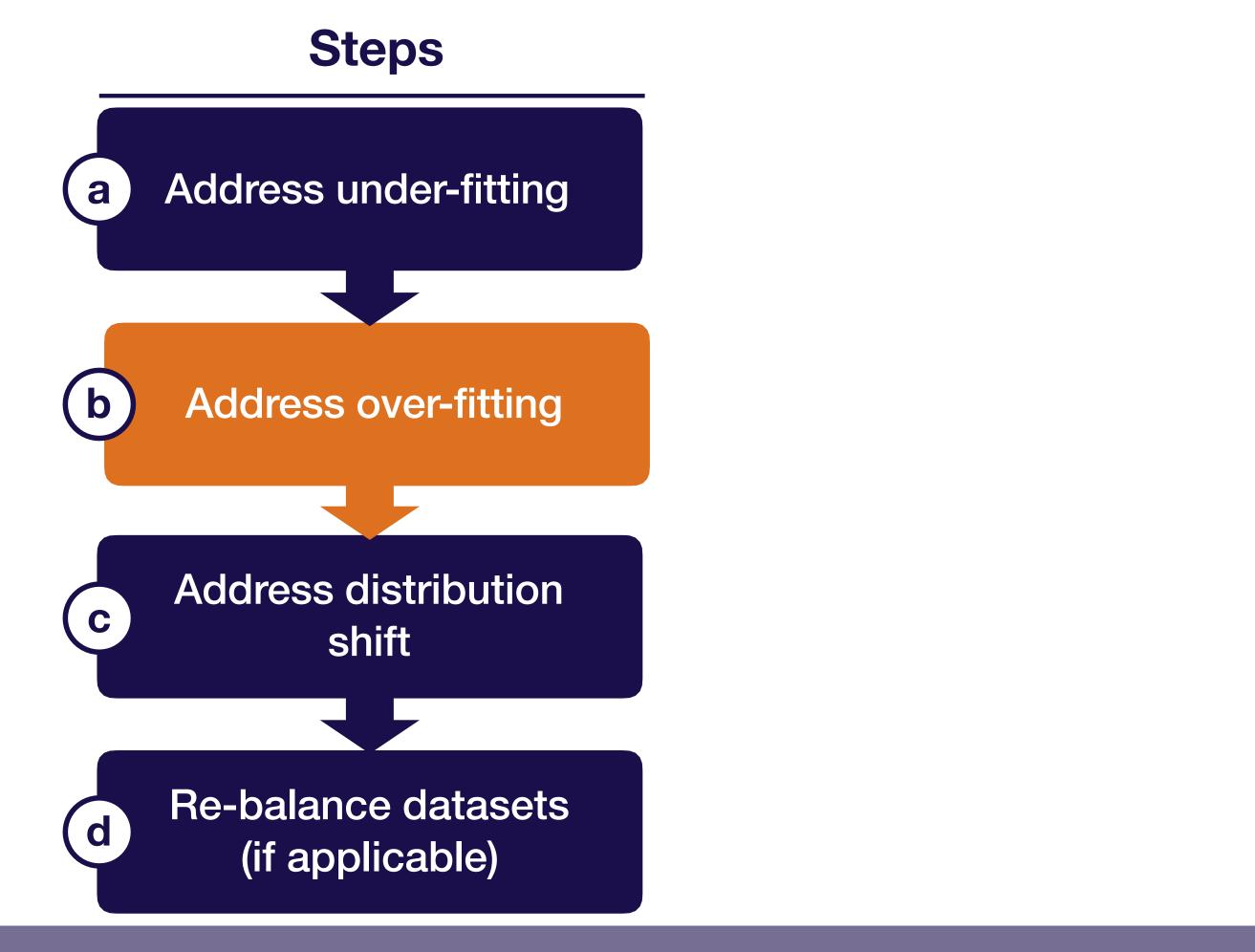
Troubleshooting - improve

Full Stack Deep Learning

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy (i.e., 1% error)

Prioritizing improvements (i.e., applied b-v)



Troubleshooting - improve

Addressing over-fitting (i.e., reducing variance)

Try first

Try later

- A. Add more training data (if possible!)
- B. Add normalization (e.g., batch norm, layer norm)
- C. Add data augmentation
- D. Increase regularization (e.g., dropout, L2, weight decay)
- E. Error analysis
- F. Choose a different (closer to state-of-the-art) model architecture
- G. Tune hyperparameters
- H. Early stopping
- I. Remove features
- J. Reduce model size

Error source	Value
Goal performance	1%
Train error	0.8%
Validation error	12%
Test error	12%

Troubleshooting - improve

Full Stack Deep Learning

Running example

0 (no pedestrian) 1 (yes pedestrian)

Increase dataset size to 250,000

Value Value **Error source**

Goal performance 1% 1%

Train error 0.8% 1.5%

Validation error 12% 5%

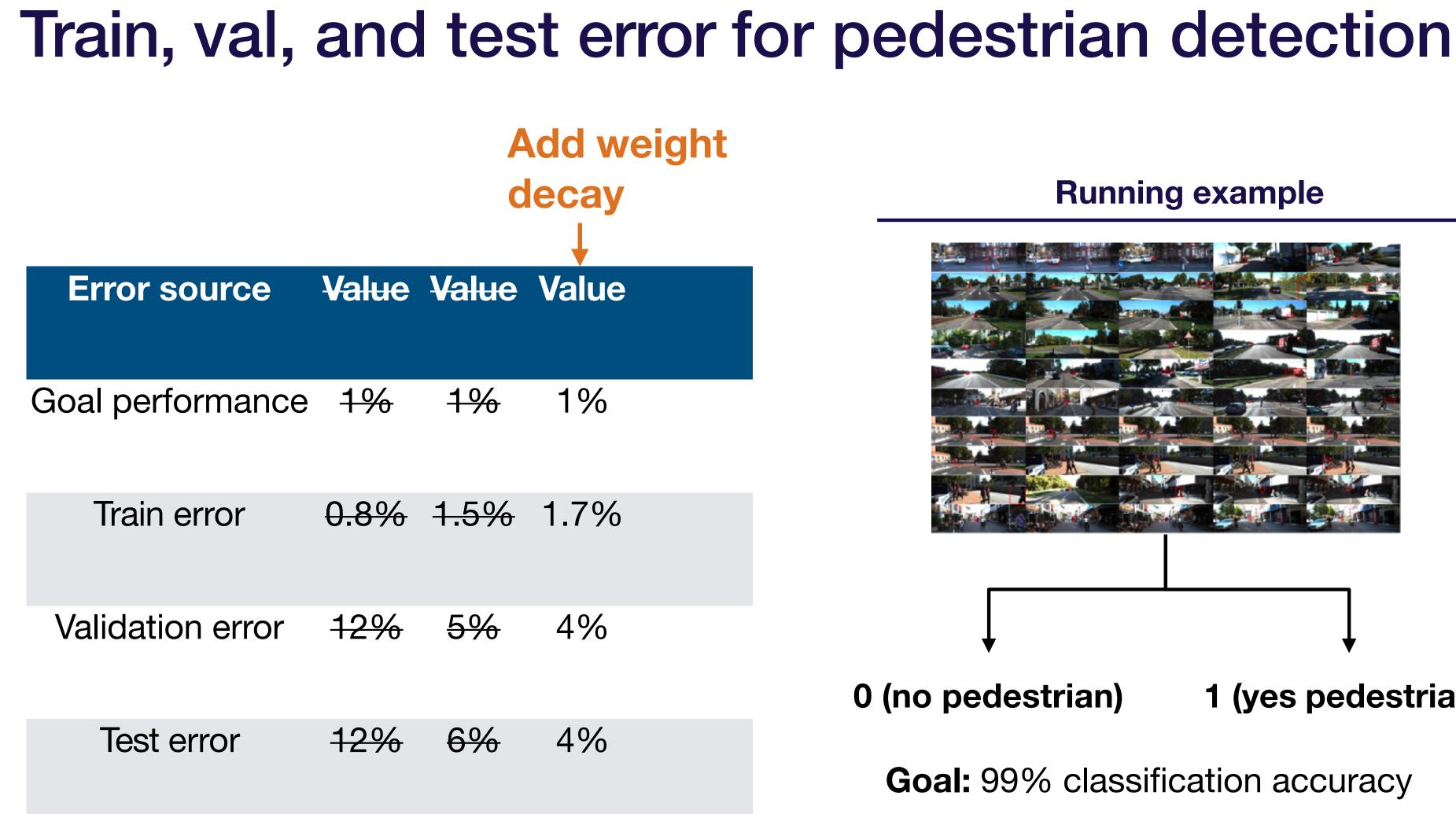
Test error 12% 6%

Troubleshooting - improve

Full Stack Deep Learning

Running example

0 (no pedestrian) 1 (yes pedestrian)



Troubleshooting - improve

Full Stack Deep Learning

Running example

0 (no pedestrian) 1 (yes pedestrian)

Train, val, and test error for pedestrian detection Add data augmentation Error source Value Value Value Value Value Value

- Goal performance 1% 1% 1%
 - Train error 0.8% 1.5% 1.7% 2%

 Validation error
 12%
 5%
 4%
 2.5%

 Test error
 12%
 6%
 4%
 2.6%

Troubleshooting - improve

0 (no pedestrian) 1 (yes pedestrian)

Train, val, and test error for pedestrian detection

Tune num layers, optimizer params, weight initialization, kernel size, weight decay

Value Value Value Value **Error source** Value

Goal performance	1%	1%	1%	1%	1%
------------------	---------------	---------------	----	----	----

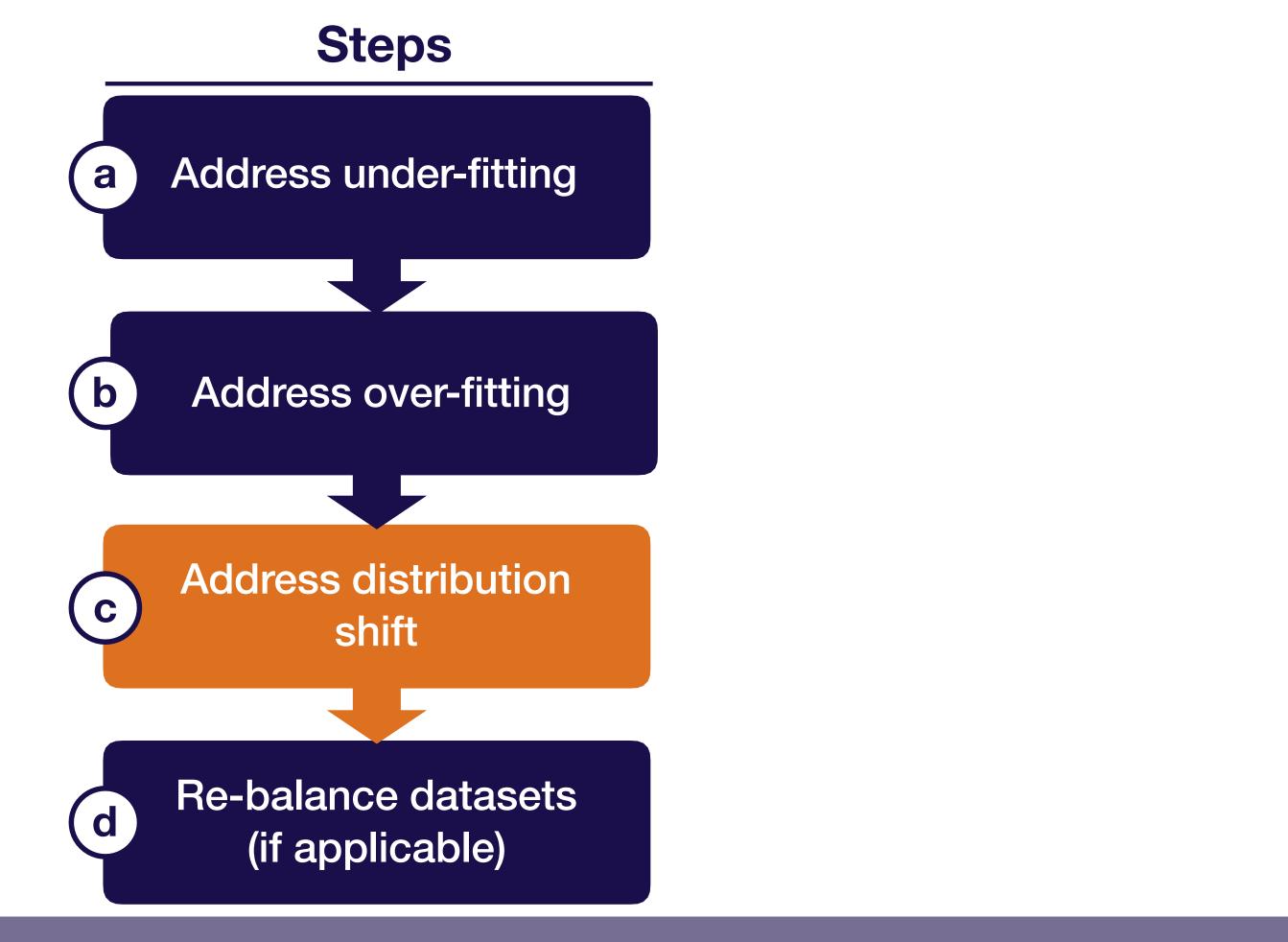
Train error 0.6% 0.8% 1.5% 1.7% 2%

2.5% 0.9% 4% Validation error 12% 5% 0 (no pedestrian) 1 (yes pedestrian) Test error 4% 12% 6% 2.6% 1.0%

Running example

Goal: 99% classification accuracy

Prioritizing improvements (i.e., applied b-v)



Troubleshooting - improve

Full Stack Deep Learning

Addressing distribution shift

- Analyze test-val set errors & collect more Α. training data to compensate
- Analyze test-val set errors & synthesize more Β. training data to compensate
- C. Apply domain adaptation techniques to training & test distributions

Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Troubleshooting - improve \sim

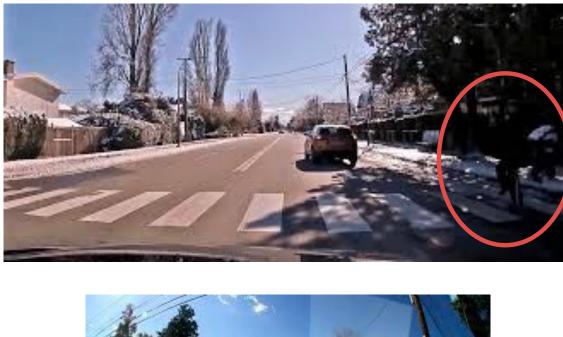
Full Stack Deep Learning

Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

R312GW 20:35:42 20/12/201

Error type 1: hard-to-see pedestrians

Troubleshooting - improve \sim



Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

R312GW 20:35:42 20/12/201

Error type 2: reflections

Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Troubleshooting - improve \sim

Error type	Error % (train- val)	Error % (test- val)	Po
1. Hard-to- see pedestrians	0.1%	0.1%	Better sense
2. Reflections	0.3%	0.3%	 Collect mo Add synthe Try to remo Better sense
3. Nighttim e scenes	0.1%	1%	 Collect mo Synthetica Simulate n Use domain

otential solutions	Priority
SORS	Low
ore data with reflections etic reflections to train set ove with pre-processing sors	Medium
ore data at night Illy darken training images ight-time data in adaptation	High

Domain adaptation

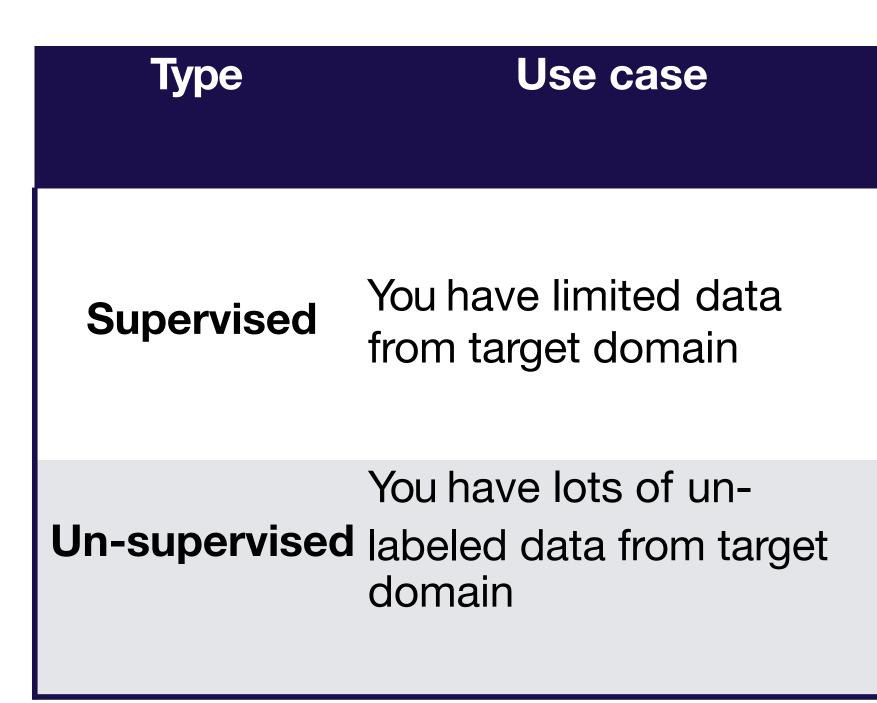
What is it?

Techniques to train on "source" distribution and generalize to another "target" using only unlabeled data or limited labeled data

When should you consider using it?

- Access to labeled data from test distribution is limited
- Access to relatively similar data is plentiful

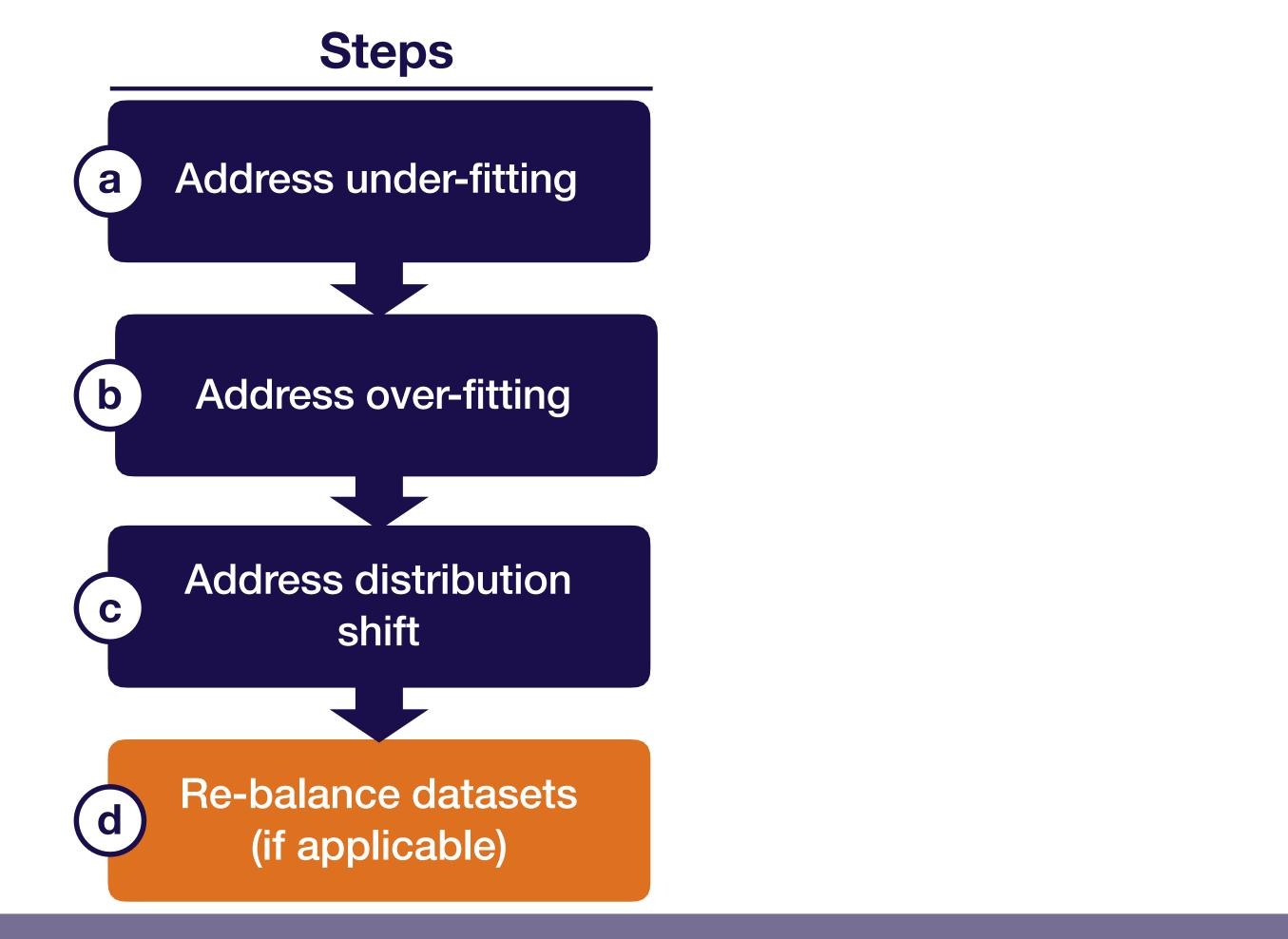
Types of domain adaptation



Example techniques

- Fine-tuning a pre- trained model
- Adding target data to train set
- Correlation Alignment (CORAL)
- Domain confusion
- CycleGAN

Prioritizing improvements (i.e., applied b-v)



Troubleshooting - improve

Full Stack Deep Learning

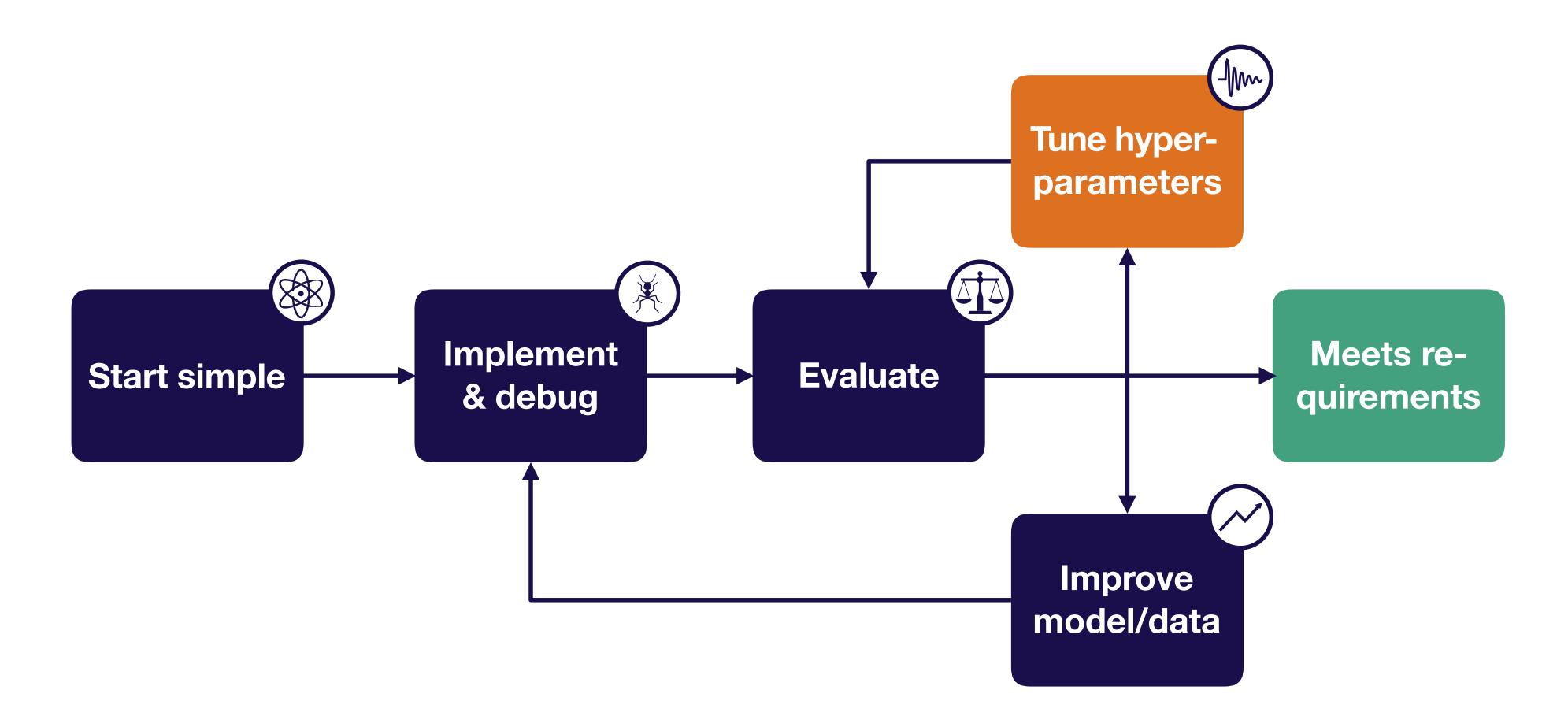
Rebalancing datasets

- If (test)-val looks significantly better than test, you overfit to the val set
- This happens with small val sets or lots of hyper parameter tuning
- When it does, recollect val data

st, you overfit to the val set

Troubleshooting - improve

Strategy for DL troubleshooting



Mrv Troubleshooting - tune

Full Stack Deep Learning

Hyperparameter optimization

Model & optimizer choices?

Network: ResNet

- How many layers?
- Weight initialization?
- Kernel size?
- Etc

Optimizer: Adam

- Batch size?
 - Learning rate?
 - beta1, beta2, epsilon?

Regularization

Running example

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Which hyper-parameters to tune?

Choosing hyper-parameters

- More sensitive to some than others \bullet
- Depends on choice of model ${\color{black}\bullet}$
- Rules of thumb (only) to the right lacksquare
- Sensitivity is relative to default values! lacksquare(e.g., if you are using all-zeros weight initialization or vanilla SGD, changing to the defaults will make a big difference)

Lea	
Oth	
(e	

W

Approximate sensitivity Hyperparameter

Learning rate	High
arning rate schedule	High
Optimizer choice	Low
er optimizer params e.g., Adam beta1)	Low
Batch size	Low
Veight initialization	Medium
Loss function	High
Model depth	Medium
Layer size	High
Layer params (e.g., kernel size)	Medium
ight of regularization	Medium
Nonlinearity	Low

Method 1: manual hyperparam optimization

How it works

- Understand the algorithm • E.g., higher learning rate means faster less stable training Train & evaluate model Guess a better hyperparam value & reevaluate • Can be combined with other methods (e.g., manually select parameter ranges to optimizer over)

Advantages

• For a skilled practitioner, may require least computation to get good result

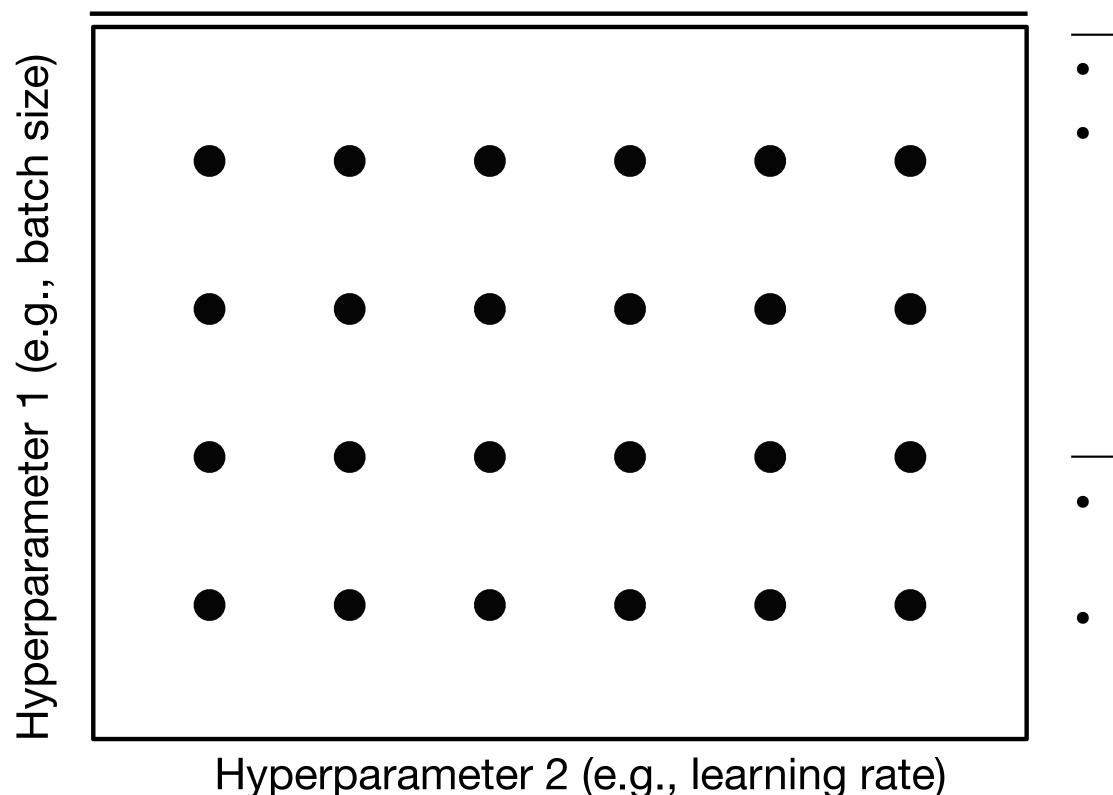
Disadvantages

Requires detailed understanding of the algorithm

• Time-consuming

Method 2: grid search

How it works



Full Stack Deep Learning

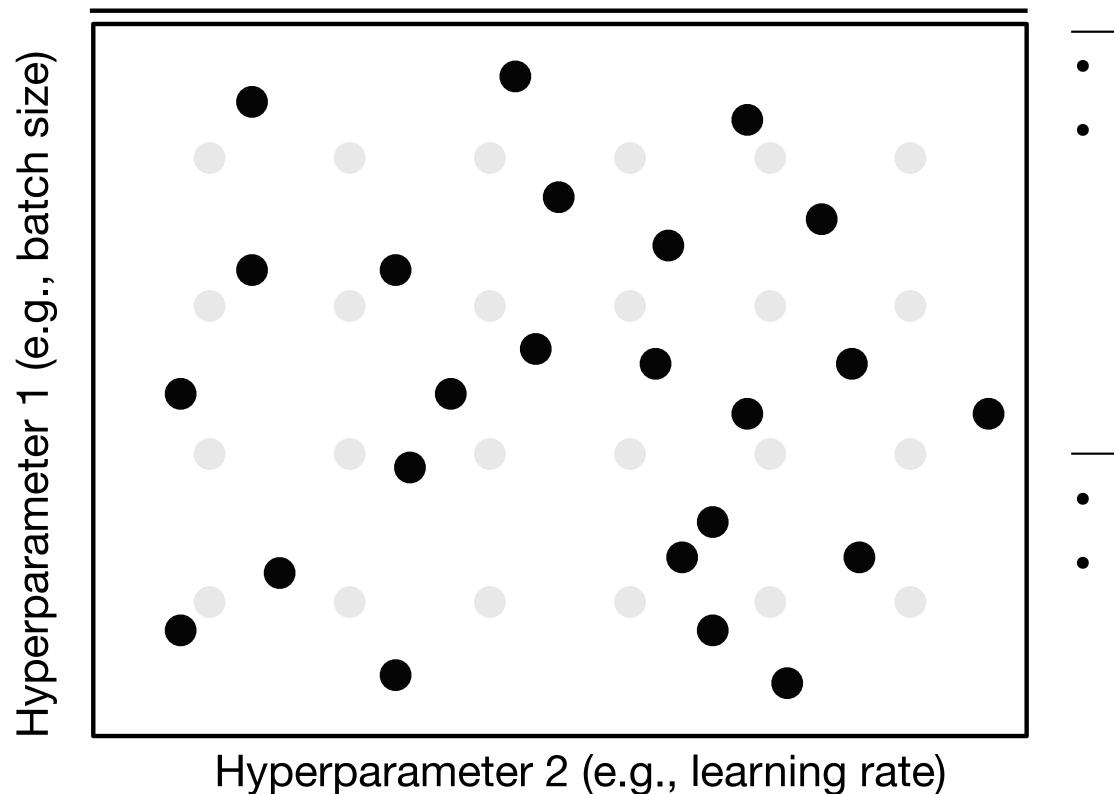
Advantages

Super simple to implement Can produce good results

- Not very efficient: need to train on all cross-combos of hyper-parameters
- May require prior knowledge about parameters to get
- good results

Method 3: random search

How it works

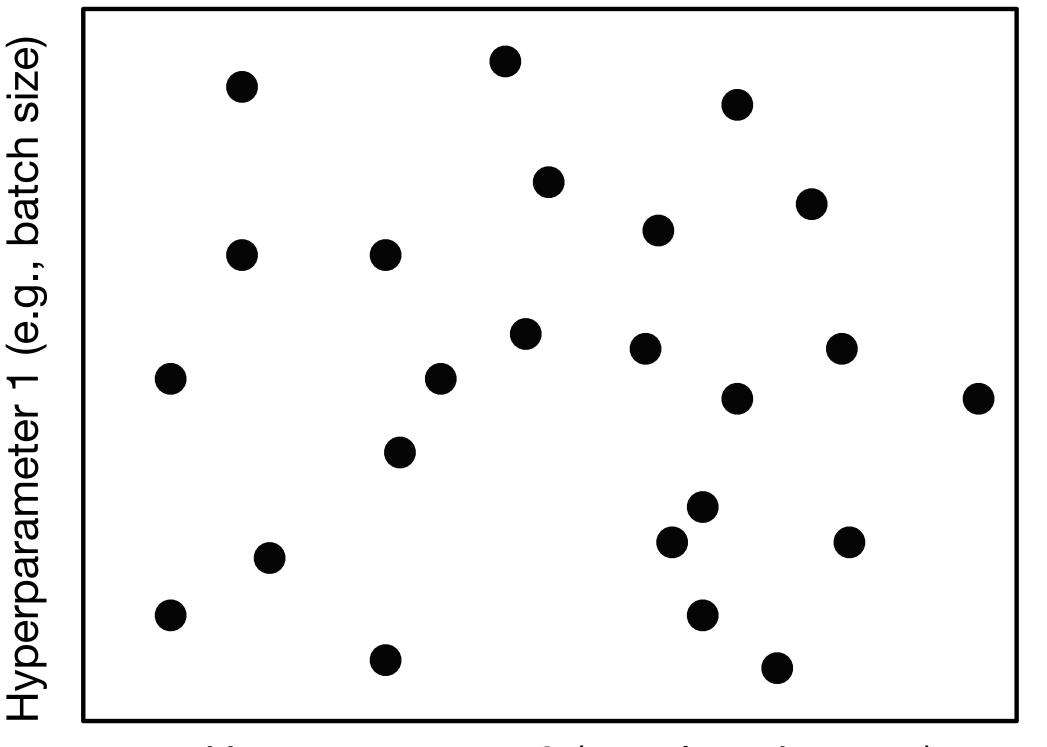


Advantages

- Easy to implement
- Often produces better results than grid search

- Not very interpretable
- May require prior knowledge about parameters to get good results

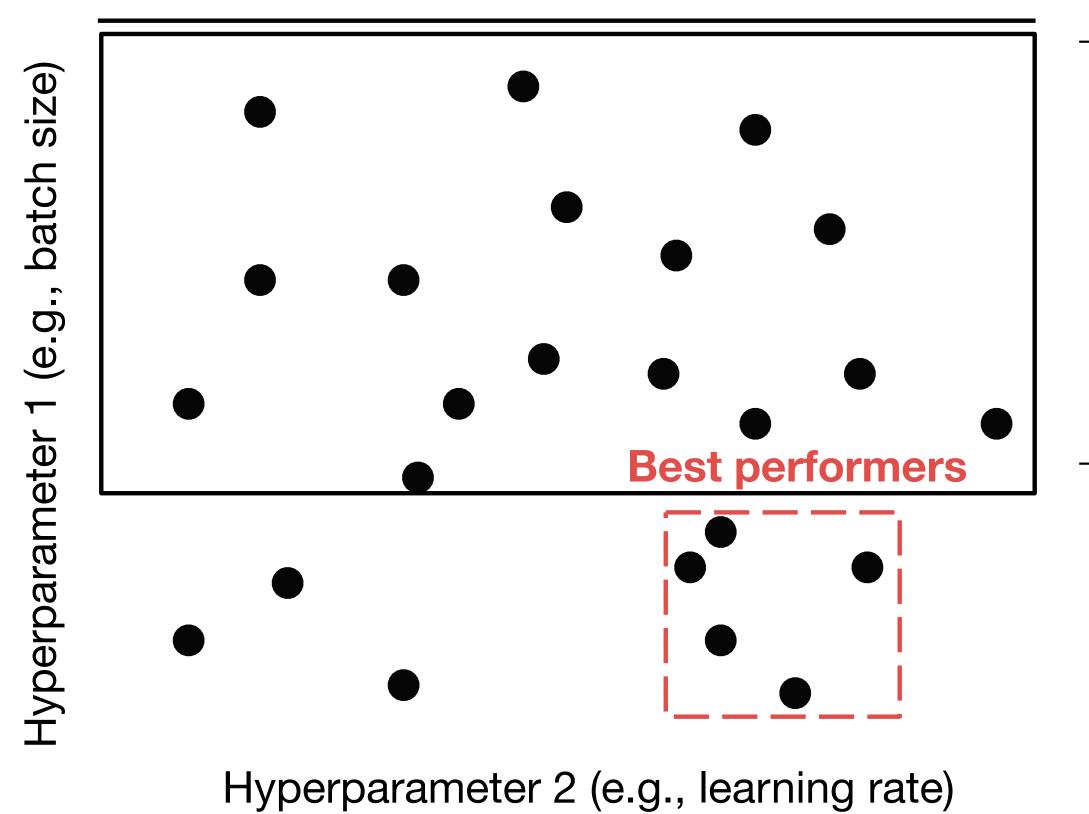
How it works



Hyperparameter 2 (e.g., learning rate)

Advantages

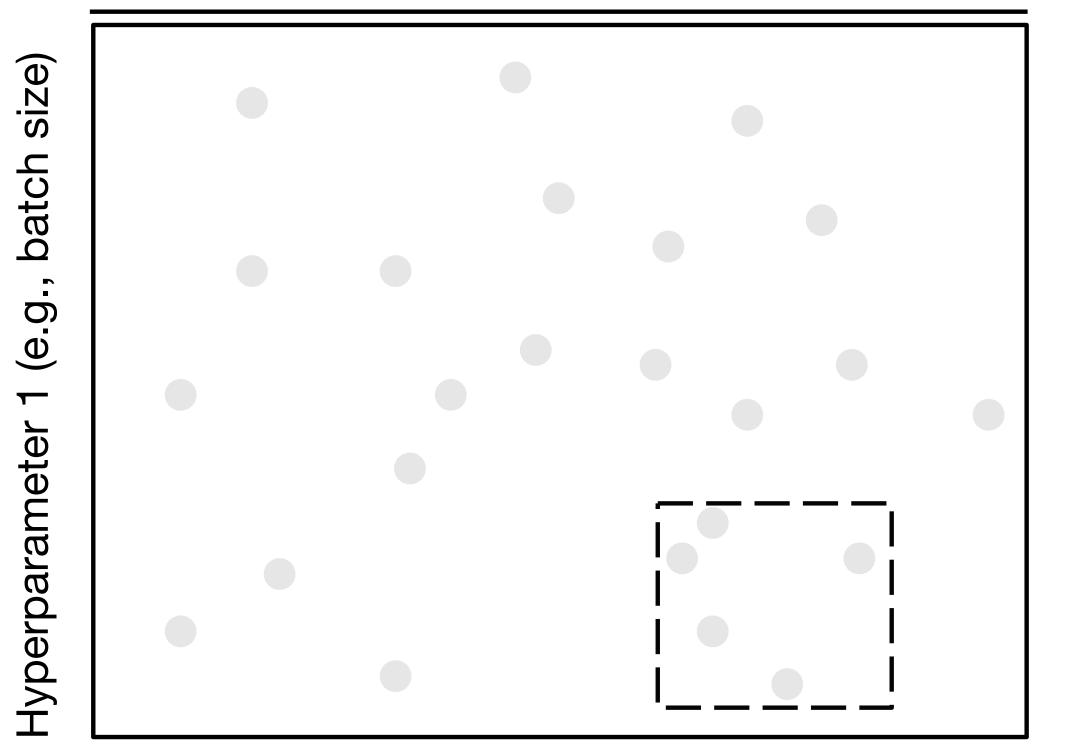
How it works



Full Stack Deep Learning

Advantages

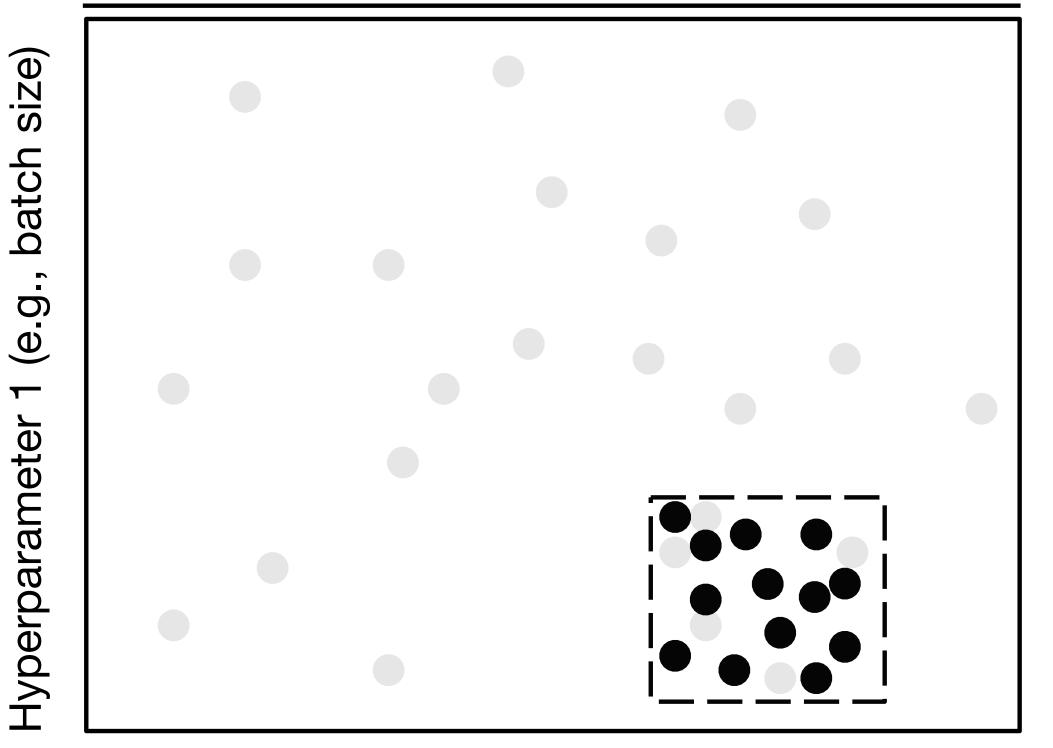
How it works



Hyperparameter 2 (e.g., learning rate)

Advantages

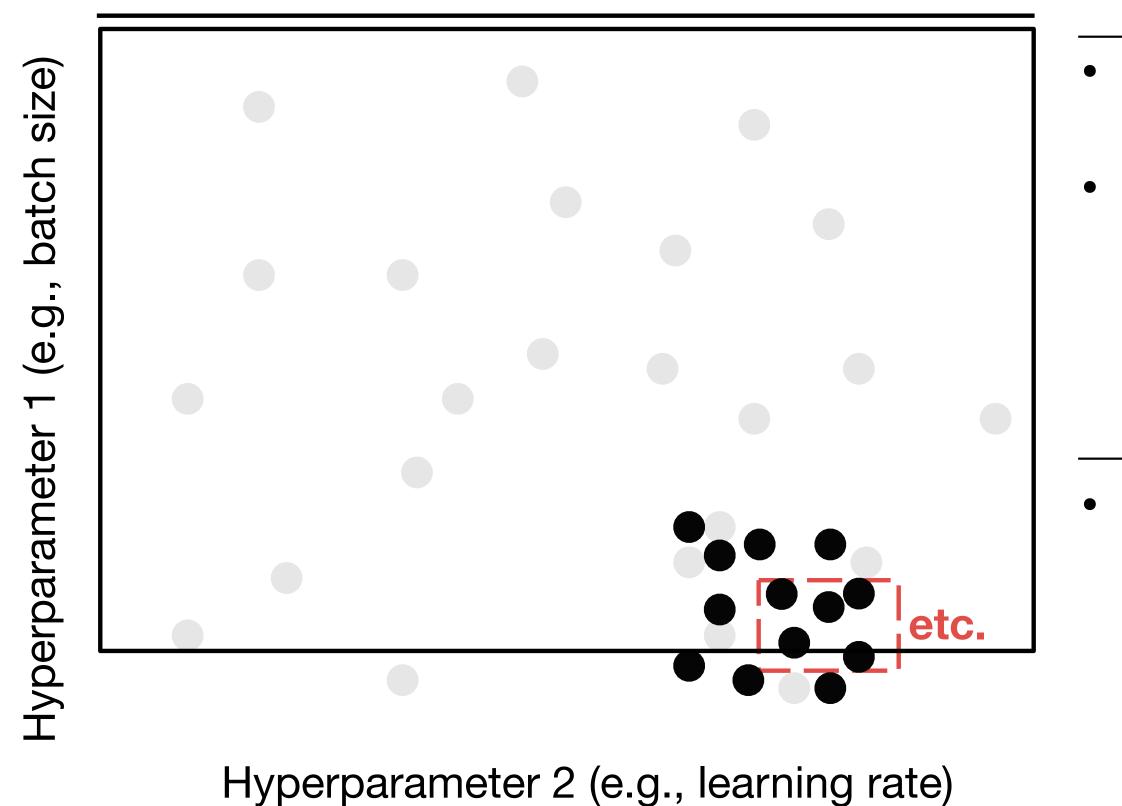
How it works



Hyperparameter 2 (e.g., learning rate)

Advantages

How it works



Full Stack Deep Learning

Advantages

- Can narrow in on very high performing hyperparameters
 - Most used method in practice

Disadvantages

Somewhat manual process

Summary of how to optimize hyperparams

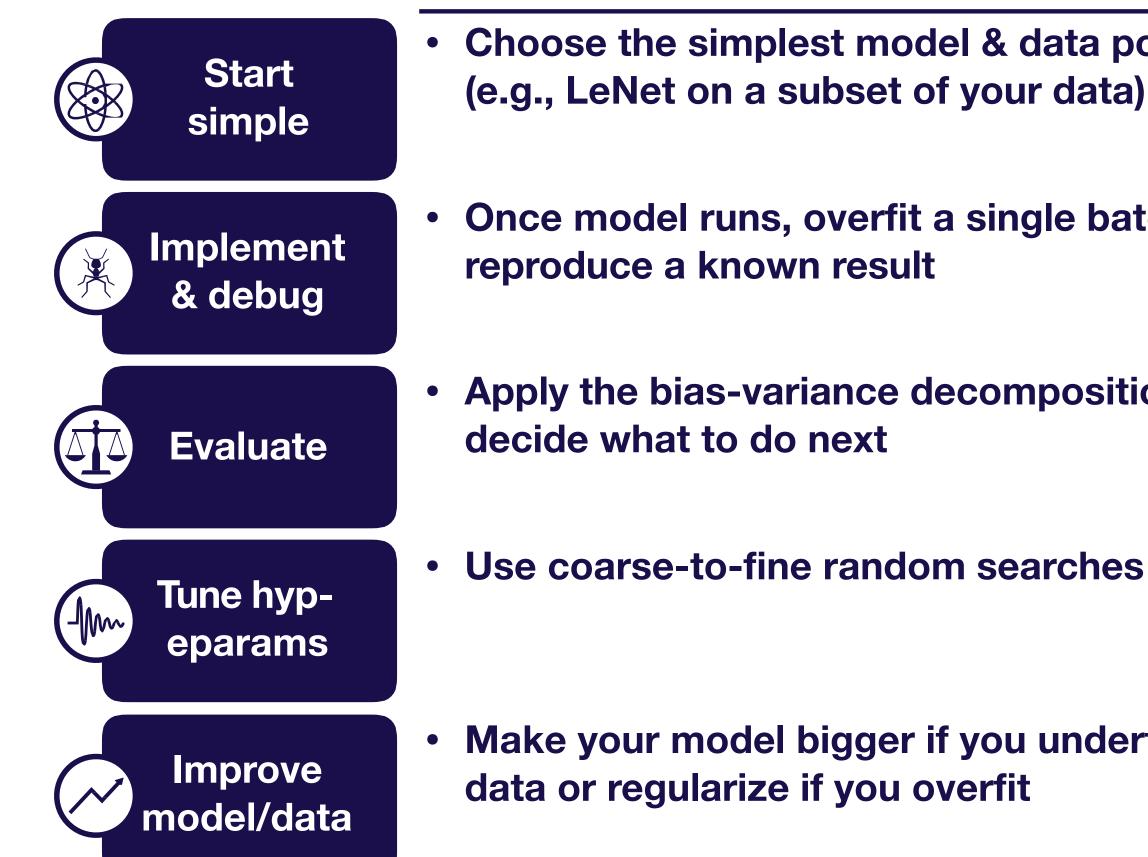
- Coarse-to-fine random searches
- Consider Bayesian hyper-parameter optimization solutions as your codebase matures

Im Troubleshooting - tune

Conclusion

- DL debugging is hard due to many competing sources of error
- To train bug-free DL models, we treat building our model as an iterative process
- The following steps can make the process easier and catch errors as early as possible

How to build bug-free DL models



Troubleshooting - conclusion

- Choose the simplest model & data possible (e.g., LeNet on a subset of your data)
- Once model runs, overfit a single batch &
- Apply the bias-variance decomposition to

Make your model bigger if you underfit; add

Where to go to learn more

- Andrew Ng's book Machine Learning Yearning (<u>http://</u> www.mlyearning.org/)
- The following Twitter thread: <u>https://twitter.com/karpathy/</u> status/1013244313327681536
- This blog post: <u>https://pcc.cs.byu.edu/2017/10/02/</u> practical-advice-for- building-deep-neural-networks/

Thank you!

