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https://course.fullstackdeeplearning.com/course-content/training-and-debugging



Full Stack Deep Learning

Lifecycle of a ML project

Planning &  
project setup

Data collection  
& labeling

Training &  
debugging

Deploying &  
testing

Team & hiring

Per-project  
activities

Infra &  
tooling

Troubleshooting - overview 3

Cross-project  
infrastructure
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Why talk about DL troubleshooting?
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Why talk about DL troubleshooting?

Troubleshooting - overview 5

Common sentiment among practitioners: 

80-90% of time debugging and tuning 

10-20% deriving math or implementing things
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Why is DL troubleshooting so hard?

Troubleshooting - overview 6



Full Stack Deep Learning

Suppose you can’t reproduce a result

He, Kaiming, et al. "Deep residual learning for image recognition."

Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Your learning curve

Troubleshooting - overview 7
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Why is your performance worse?

Poor model  
performance

Troubleshooting - overview 8
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Why is your performance worse?

Implementation 
bugs 

Troubleshooting - overview 9

Poor model  
performance
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Most DL bugs are invisible

Troubleshooting - overview 10
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Most DL bugs are invisible

Troubleshooting - overview 11

Labels out of order!
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Another example

Troubleshooting - overview 12

Model performs poorly 
after the first epoch.
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Another example

Troubleshooting - overview 13

CAUATION: In-place 
operation!
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Why is your performance worse?

Poor model  
performance

Implementation  
bugs

Hyperparameter  
choices

Troubleshooting - overview 14
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Models are sensitive to hyperparameters

Andrej Karpathy, CS231n course notes

Troubleshooting - overview 15
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Andrej Karpathy, CS231n course notes He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet  
classification." Proceedings of the IEEE international conference on computer vision. 2015.
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Models are sensitive to hyperparameters
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Why is your performance worse?

Implementation  
bugs

Hyperparameter  
choices

Troubleshooting - overview 17

Data/model fit

Poor model  
performance
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Data / model fit

Data from the paper: ImageNet Yours: self-driving car images

Troubleshooting - overview 18
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Why is your performance worse?

Dataset  
constructionData/model fit

Poor model  
performance

Implementation  
bugs

Hyperparameter  
choices

Troubleshooting - overview 19
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Constructing good datasets is hard

Amount of lost sleep over...

PhD Tesla

Slide from Andrej Karpathy’s talk “Building the Software 2.0 Stack” at TrainAI 2018, 5/10/2018

Troubleshooting - overview 20
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Common dataset construction issues

Troubleshooting - overview 21

• Not enough data


• Class imbalances


• Noisy labels


• Train / test from different distributions


• etc
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Takeaways: why is troubleshooting hard?

Troubleshooting - overview 22

• Hard to tell if you have a bug


• Lots of possible sources for the same degradation in  
performance


• Results can be sensitive to small changes in  
hyperparameters and dataset makeup
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Strategy for DL troubleshooting

Troubleshooting - overview 23
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Key mindset for DL troubleshooting

Troubleshooting - overview 24

Pessimism
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Key idea of DL troubleshooting

Troubleshooting - overview 25

…Start simple and gradually  
ramp up complexity

Since it’s hard to  
disambiguate errors…
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Strategy for DL troubleshooting

Tune hyper-  
parameters

Implement  
& debugStart simple Evaluate

Improve  
model/data

Meets re-  
quirements

Troubleshooting - overview 26
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Quick summary

Start  
simple

• Choose the simplest model & data possible  
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 27
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Quick summary

Implement  
& debug

Start  
simple

• Choose the simplest model & data possible  
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 28

• Once model runs, overfit a single batch &  
reproduce a known result
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Quick summary

Implement  
& debug

Start  
simple

Evaluate

• Choose the simplest model & data possible  
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 29

• Once model runs, overfit a single batch &  
reproduce a known result

• Apply the bias-variance decomposition to  
decide what to do next
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Quick summary

Tune hyp-  
eparams

Implement  
& debug

Start  
simple

Evaluate

• Choose the simplest model & data possible  
(e.g., LeNet on a subset of your data)
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• Once model runs, overfit a single batch &  
reproduce a known result

• Apply the bias-variance decomposition to  
decide what to do next

• Use coarse-to-fine random searches



Full Stack Deep Learning

Tune hyp-  
eparams

Quick summary

Implement  
& debug

Start  
simple

Evaluate

Improve  
model/data

• Choose the simplest model & data possible  
(e.g., LeNet on a subset of your data)

Troubleshooting - overview 31

• Once model runs, overfit a single batch &  
reproduce a known result

• Apply the bias-variance decomposition to  
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add  
data or regularize if you overfit
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We’ll assume you already have…

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example

Troubleshooting - overview 32

•


•

Initial test set

A single metric to improve

• Target performance based on human-level  
performance, published results, previous  
baselines, etc
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Questions?

Troubleshooting - overview 33
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Tune hyper-  
parameters

Implement  
& debugStart simple Evaluate

Improve  
model/data

Meets re-  
quirements

Strategy for DL troubleshooting

Troubleshooting - start simple 34
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Starting simple

Normalize inputs

Choose a simple  
architecture

b Use sensible defaults

Steps

a

c

d Simplify the problem

Troubleshooting - start simple 35
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Demystifying architecture selection

Start here Consider using this later

Images

Troubleshooting - start simple 36

LeNet-like architecture

LSTM with one hidden  
layer (or temporal convs)

Fully connected neural net  
with one hidden layer

ResNet

Attention model or  
WaveNet-like model

Problem-dependent

Images

Sequences

Other
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Example: Object Detection

Troubleshooting - overview 37

Usually start from ResNet50-C5 to verify the idea
Finally turn to ResNet101-FPN for the best performance
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Starting simple

Normalize inputs

Choose a simple  
architecture

b Use sensible defaults

Steps

a

c

d Simplify the problem

Troubleshooting - start simple 38
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Recommended network / optimizer defaults

Troubleshooting - start simple 39

• Optimizer: Adam optimizer with learning rate 3e-4 

• Activations: relu (FC and Conv models), tanh (LSTMs) 

• Initialization: He et al. normal (relu),	 Glorot normal (tanh) 

• Regularization: None 

• Data normalization: None
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Normalize inputs

Starting simple

Choose a simple  
architecture

b Use sensible defaults

a

c

Steps

d Simplify the problem

Troubleshooting - start simple 40
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Important to normalize scale of input data

Troubleshooting - start simple 41

• Subtract mean and divide by variance


• For images, fine to scale values to [0, 1] or [-0.5, 0.5]  
(e.g., by dividing by 255)

[Careful, make sure your library doesn’t do it for you!]


• For point clouds (at least synthetic data), normalize to 
a unit sphere or cube
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Normalize inputs

Starting simple

Choose a simple  
architecture

b Use sensible defaults

a

c

Steps

d Simplify the problem

Troubleshooting - start simple 42
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Consider simplifying the problem as well

Troubleshooting - start simple 43

• Start with a small training set (~10,000 examples)


• Use a fixed number of objects, classes, image size, etc.


• Create a simpler synthetic training set
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Simplest model for pedestrian detection

• Start with a subset of 10,000 images for training, 1,000 for val, and 500  
for test


Use a LeNet architecture with sigmoid cross-entropy loss  

Adam optimizer with LR 3e-4

•

•

• No regularization

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example

Troubleshooting - start simple 44
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Normalize inputs

Starting simple

Choose a simple  
architecture

b Use sensible defaults

a

c

Steps Summary

d Simplify the problem
•

Troubleshooting - start simple 45

Start with a simpler  
version of your problem  
(e.g., smaller dataset)

• Adam optimizer & no  
regularization

• Subtract mean and divide  
by std, or just divide by  
255 (ims)

• LeNet, LSTM, or fully  
connected
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Questions?

Troubleshooting - start simple 46
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Tune hyper-  
parameters

Implement  
& debugStart simple Evaluate

Improve  
model/data

Meets re-  
quirements

Strategy for DL troubleshooting

Troubleshooting - debug 47
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Implementing bug-free DL models

Get your model to  
run

Compare to a  
known result

Overfit a single  
batchb

a

c

Steps

Troubleshooting - debug 48
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Preview: the five most common DL bugs

Troubleshooting - debug 49

• Incorrect shapes for your tensors 
Can fail silently! E.g., accidental broadcasting: x.shape = (None,), y.shape =  
(None, 1), (x+y).shape = (None, None)


• Pre-processing inputs incorrectly 
E.g., Forgetting to normalize, or too much pre-processing


• Incorrect input to your loss function 
E.g., softmaxed outputs to a loss that expects logits


• Forgot to set up train mode for the net correctly 
E.g., toggling train/eval, controlling batch norm dependencies


• Numerical instability - inf/NaN 
Often stems from using an exp, log, or div operation
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Example 

Troubleshooting - overview 50

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py
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Example

Troubleshooting - overview 51

https://github.com/waymo-research/waymo-open-dataset/blob/master/waymo_open_dataset/utils/box_utils.py

box[…, -1]: […, N]
tf.atan2(…): […]
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General advice for implementing your model

Troubleshooting - debug 52

Use off-the-shelf components, e.g.,

•

•

Keras

tf.layers.dense(…)
instead of

tf.nn.relu(tf.matmul(W, x))

• tf.losses.cross_entropy(…)
instead of writing out the exp

Lightweight implementation

• Minimum possible new lines of  
code for v1


• Rule of thumb: <200 lines


• (Tested infrastructure  
components are fine)

Build complicated data pipelines later 

• Start with a dataset you can load into  
memory



Full Stack Deep Learning

Implementing bug-free DL models

Get your model to  
run

Compare to a  
known result

Overfit a single  
batchb

a

c

Steps

Troubleshooting - debug 53
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Get your model to  
runa

Shape  
mismatch

OOM

Other

Common
issues Recommended resolution

Scale back memory intensive  
operations one-by-one

Standard debugging toolkit (Stack  
Overflow + interactive debugger)

Step through model creation and  
inference in a debugger

Casting 
issue

Troubleshooting - debug 54

Implementing bug-free DL models
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Debuggers for DL code
•


•

Pytorch: easy, use ipdb

tensorflow: trickier

Option 1: step through graph creation

Troubleshooting - debug 55
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Debuggers for DL code

•


•

Pytorch: easy, use ipdb

tensorflow: trickier

Option 2: step into training loop

Evaluate tensors using sess.run(…)

Troubleshooting - debug 56
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Debuggers for DL code

•


•

Pytorch: easy, use ipdb

tensorflow: trickier

Option 3: use tfdb

Stops  
execution at  
each 
sess.run(…)  
and lets you  
inspect

python -m tensorflow.python.debug.examples.debug_mnist --debug

Troubleshooting - debug 57
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Get your model to  
runa

Shape  
mismatch

OOM

Other

Common
issues Recommended resolution

Scale back memory intensive  
operations one-by-one

Standard debugging toolkit (Stack  
Overflow + interactive debugger)

Step through model creation and  
inference in a debugger

Casting 
issue

Troubleshooting - debug 58

Implementing bug-free DL models
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Shape  
mismatch Undefined  

shapes

Incorrect  
shapes

Common
issues Most common causes

• 
•

Troubleshooting - debug 59

Flipped dimensions when using tf.reshape(…) 
Took sum, average, or softmax over wrong  
dimension 
Forgot to flatten after conv layers 
Forgot to get rid of extra “1” dimensions (e.g., if  
shape is (None, 1, 1, 4) 
Data stored on disk in a different dtype than  
loaded (e.g., stored a float64 numpy array, and  
loaded it as a float32)

• 
•

•

Implementing bug-free DL models

• Confusing tensor.shape, tf.shape(tensor),  
tensor.get_shape() 

• Reshaping things to a shape of type Tensor (e.g.,  
when loading data from a file)
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Casting issue
Data not in  

float32

Common
issues Most common causes

Implementing bug-free DL models

Troubleshooting - debug 60

• 
•

Forgot to cast images from uint8 to float32 
Generated data using numpy in float64, forgot to  
cast to float32
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OOM
Too big a  

tensor

Too much  
data

Common
issues Most common causes

Duplicating  
operations

Other  
processes

•

Troubleshooting - debug 61

•

• 
•

• Loading too large a dataset into memory, rather  
than using an input queue 
Allocating too large a buffer for dataset creation 

Memory leak due to creating multiple models in  
the same session 
Repeatedly creating an operation (e.g., in a  
function that gets called over and over again) 
Other processes running on your GPU

• Too large a batch size for your model (e.g.,  
during evaluation) 

• Too large fully connected layers

Implementing bug-free DL models
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Other common  
errors Other bugs

Common
issues Most common causes

Implementing bug-free DL models

Troubleshooting - debug 62

• 
• 
•

Forgot to initialize variables 
Forgot to turn off bias when using batch norm 
“Fetch argument has invalid type” - usually you  
overwrote one of your ops with an output during  
training
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Get your model to  
run

Compare to a  
known result

Overfit a single  
batchb

a

c

Steps

Implementing bug-free DL models

Troubleshooting - debug 63
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Overfit a single  
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

Implementing bug-free DL models

Troubleshooting - debug 64
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Overfit a single  
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

Implementing bug-free DL models

Troubleshooting - debug 65

• 
• 
•

Flipped the sign of the loss function / gradient  
Learning rate too high 

Softmax taken over wrong dimension
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Overfit a single  
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• 
•

Numerical issue. Check all exp, log, and div operations  
Learning rate too high

Implementing bug-free DL models

Troubleshooting - debug 66
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Overfit a single  
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• Data or labels corrupted (e.g., zeroed, incorrectly  
shuffled, or preprocessed incorrectly) 
Learning rate too high•

Implementing bug-free DL models

Troubleshooting - debug 67
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Overfit a single  
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• 
• 
• 
•

Learning rate too low 
Gradients not flowing through the whole model  
Too much regularization 

Incorrect input to loss function (e.g., softmax instead of  
logits, accidentally add ReLU on output) 
Data or labels corrupted•

Implementing bug-free DL models

Troubleshooting - debug 68
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Overfit a single  
batchb

Error goes up

Error oscillates

Common
issues

Error explodes

Error plateaus

Most common causes

• 
• 
• 

• 
• 
•

Numerical issue. Check all exp, log, and div operations  
Learning rate too high 

Data or labels corrupted (e.g., zeroed or incorrectly  
shuffled) 
Learning rate too high 

Learning rate too low 
Gradients not flowing through the whole model  
Too much regularization 

Incorrect input to loss function (e.g., softmax instead of  
logits) 
Data or labels corrupted

• 
• 
• 
• 
•

•

Implementing bug-free DL models
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Flipped the sign of the loss function / gradient  
Learning rate too high 

Softmax taken over wrong dimension
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Example

Troubleshooting - overview 70
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Get your model to  
run

Compare to a  
known result

Overfit a single  
batchb

a

c

Steps

Implementing bug-free DL models
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Hierarchy of known results

More  
useful

Less  
useful

You can: 

• Walk through code line-by-line and  
ensure you have the same output 

• Ensure your performance is up to par  
with expectations

Troubleshooting - debug 72

• Official model implementation evaluated on similar dataset  
to yours
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Hierarchy of known results

More  
useful

Less  
useful

You can: 

• Walk through code line-by-line and  
ensure you have the same output

Troubleshooting - debug 73

• Official model implementation evaluated on benchmark  
(e.g., MNIST)
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• Unofficial model implementation

Hierarchy of known results

More  
useful

Less  
useful

You can: 

• Same as before, but with lower  
confidence

Troubleshooting - debug 74



Full Stack Deep Learning

Hierarchy of known results

More  
useful

Less  
useful

You can:

Troubleshooting - debug 75

• Ensure your performance is up to par  
with expectations

• Results from a paper (with no code)
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• Results from your model on a benchmark dataset (e.g.,  
MNIST)

Hierarchy of known results

More  
useful

Less  
useful

You can: 

• Make sure your model performs well in a  
simpler setting

Troubleshooting - debug 76



Full Stack Deep Learning

• Results from a similar model on a similar dataset

Hierarchy of known results

More  
useful

Less  
useful

You can: 

• Get a general sense of what kind of  
performance can be expected

Troubleshooting - debug 77
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• Super simple baselines (e.g., average of outputs or linear  
regression)

Hierarchy of known results

More  
useful

Less  
useful

You can: 

• Make sure your model is learning  
anything at all

Troubleshooting - debug 78
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Hierarchy of known results

More  
useful

Troubleshooting - debug 79

Less  
useful

• Official model implementation evaluated on similar dataset  
to yours


• Official model implementation evaluated on benchmark  
(e.g., MNIST)

•

•

•

Unofficial model implementation

Results from the paper (with no code)

Results from your model on a benchmark dataset (e.g.,  
MNIST)

•

•

Results from a similar model on a similar dataset

Super simple baselines (e.g., average of outputs or linear  
regression)
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Summary: how to implement & debug

Get your model to  
run

Compare to a  
known result

Overfit a single  
batchb

a

c

Steps Summary

• Look for corrupted data, over-  
regularization, broadcasting errors

Troubleshooting - debug 80

• Keep iterating until model performs  
up to expectations

• Step through in debugger & watch out  
for shape, casting, and OOM errors
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Questions?

Troubleshooting - debug 81
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Strategy for DL troubleshooting

Tune hyper-  
parameters

Implement  
& debugStart simple Evaluate

Improve  
model/data

Meets re-  
quirements

Troubleshooting - evaluate 82
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Bias-variance decomposition

Troubleshooting - evaluate 83
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Bias-variance decomposition

Troubleshooting - evaluate 84
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Bias-variance decomposition

Troubleshooting - evaluate 85
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25

5
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Irre
ducible error
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Avoidable bias

i.e., underfitt
ing) Train error

Variance (i.e.,

overfitt
ing) Val error

Val set overfitt
ing

Test error
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0

25

30

35

40
Breakdown of test error by source

Bias-variance decomposition
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Bias-variance decomposition

Troubleshooting - evaluate 87

• Test error = irreducible error + bias + variance + val overfitting 

• This assumes train, val, and test all come from the same distribution.  
What if not?



Full Stack Deep Learning

Handling distribution shift

Test data

Use two val sets: one sampled from training distribution and  
one from test distribution

Troubleshooting - evaluate 88

Train data
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The bias-variance tradeoff

Troubleshooting - evaluate 89
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Bias-variance with distribution shift

Troubleshooting - evaluate 90
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Bias-variance with distribution shift
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Train, val, and test error for pedestrian detection

Error source Value

Goal  
performance 1%

Train error 20%

Validation error	 27%

Test error	 28%

Train - goal = 19%  
(under-fitting)

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example

Troubleshooting - evaluate 92
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Train, val, and test error for pedestrian detection

Train error	 20%

Validation error	 27%

Error source Value

Goal  
performance 1%

Test error	 28%

Val - train = 7%  
(over-fitting)

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example

Troubleshooting - evaluate 93
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Train, val, and test error for pedestrian detection

Error source Value

Goal  
performance 1%

Train error	 20%

Validation error	 27%

Test error 28% (looks good!)
Test - val = 1% 0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example

Troubleshooting - evaluate 94
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Summary: evaluating model performance

Troubleshooting - evaluate 95

Test error = irreducible error + bias + variance
+ distribution shift + val overfitting
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Questions?

Troubleshooting - evaluate 96
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Strategy for DL troubleshooting

Tune hyper-  
parameters

Implement  
& debugStart simple Evaluate

Improve  
model/data

Meets re-  
quirements

Troubleshooting - improve 97
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Address distribution  
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets  
(if applicable)

b Address over-fitting

a Address under-fitting

c

Steps

d

Troubleshooting - improve 98
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Addressing under-fitting (i.e., reducing bias)

Try first

Troubleshooting - improve 99

Try later

A. Make your model bigger (i.e., add layers or use  
more units per layer)


B. Reduce regularization


C. Error analysis


D. Choose a different (closer to state-of-the art)  
model architecture (e.g., move from LeNet to  
ResNet)


E. Tune hyper-parameters (e.g., learning rate)


F. Add features
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Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy  
(i.e., 1% error)

Error source Value Value

Goal performance 1% 1%

Train error 20% 7%

Validation error 27% 19%

Test error 28% 20%

Add more layers  
to the ConvNet

Troubleshooting - improve 100
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Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy  
(i.e., 1% error)

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 20% 7% 3%

Validation error 27% 19% 10%

Test error 28% 20% 10%

Switch to  
ResNet-101

Troubleshooting - improve 101
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Train, val, and test error for pedestrian detection

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy  
(i.e., 1% error)

Error source Value Value Value Value

Goal performance 1% 1% 1% 1%

Train error 20% 7% 3% 0.8%

Validation error 27% 19% 10% 12%

Test error 28% 20% 10% 12%

Tune learning  
rate

Troubleshooting - improve 102
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Address distribution  
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets  
(if applicable)

b Address over-fitting

a Address under-fitting

c

Steps

d

Troubleshooting - improve 103
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Addressing over-fitting (i.e., reducing variance)
Try first
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Try later

A. Add more training data (if possible!)


B. Add normalization (e.g., batch norm, layer norm)


C. Add data augmentation


D. Increase regularization (e.g., dropout,	 L2, weight decay)


E. Error analysis


F. Choose a different (closer to state-of-the-art) model  
architecture


G. Tune hyperparameters


H. Early stopping


I. Remove features


J. Reduce model size
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Train, val, and test error for pedestrian detection

Error source Value

Goal performance 1%

Train error 0.8%

Validation error 12%

Test error 12%
0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value

Goal performance 1% 1%

Train error 0.8% 1.5%

Validation error 12% 5%

Test error 12% 6%

Increase dataset
size to 250,000

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value Value

Goal performance 1% 1% 1%

Train error 0.8% 1.5% 1.7%

Validation error 12% 5% 4%

Test error 12% 6% 4%

Add weight
decay

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value Value Value

Goal performance	 1%	 1%	 1%	 1%

Train error	 0.8%	 1.5%	 1.7%	 2%

Test error	 12%	 6%	 4%	 2.6%

Add data
augmentation

Validation error	 12%	 5%	 4%	 2.5%

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Train, val, and test error for pedestrian detection

Error source Value Value Value Value Value

Goal performance	 1%	 1%	 1%	 1%	 1%

Train error	 0.8%	 1.5%	 1.7%	 2%	 0.6%

Validation error	 12%	 5%	 4%	 2.5%

Test error	 12%	 6%	 4%	 2.6%	 1.0%

Tune num layers, optimizer params, weight
initialization, kernel size, weight decay

0.9%

0 (no pedestrian) 1 (yes pedestrian)

Goal: 99% classification accuracy

Running example
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Address distribution  
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets  
(if applicable)

b Address over-fitting

c

Steps 

a Address under-fitting

d
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Addressing distribution shift

Try first

Troubleshooting - improve 111

Try later

A. Analyze test-val set errors & collect more  
training data to compensate


B. Analyze test-val set errors & synthesize more  
training data to compensate


C. Apply domain adaptation techniques to  
training & test distributions
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 1: hard-to-see  
pedestrians
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 2: reflections
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Error analysis
Test-val set errors (no pedestrian detected) Train-val set errors (no pedestrian detected)

Error type 3 (test-val only): 
night scenes
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Error analysis

Error type
Error %  

(train-
val)

Error %  
(test-
val)

Potential solutions Priority

1. Hard-to-
see  
pedestrians

0.1% 0.1%
• Better sensors

Low

2. Reflections 0.3% 0.3%

• Collect more data with reflections

• Add synthetic reflections to train set

• Try to remove with pre-processing

• Better sensors

Medium

3. 
Nighttim
e  
scenes

0.1% 1%

• Collect more data at night

• Synthetically darken training images

• Simulate night-time data

• Use domain adaptation

High
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Domain adaptation

What is it? 

Techniques to train on “source”  
distribution and generalize to another  
“target” using only unlabeled data or  

limited labeled data

When should you consider using it? 

• Access to labeled data from test  
distribution is limited


• Access to relatively similar data is  
plentiful
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Types of domain adaptation
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Type Use case Example techniques

Supervised You have limited data
 from target domain

• Fine-tuning a 
pre-  trained 
model


• Adding target data 
to  train set

You have lots of un-

Un-supervised labeled data from target  

domain

• Correlation 
Alignment  (CORAL)


• Domain confusion

• CycleGAN
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Address distribution  
shift

Prioritizing improvements (i.e., applied b-v)

Re-balance datasets  
(if applicable)

b Address over-fitting

c

Steps 

a Address under-fitting

d
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Rebalancing datasets

Troubleshooting - improve 120

• If (test)-val looks significantly better than test, you overfit to the val set


• This happens with small val sets or lots of hyper parameter tuning


• When it does, recollect val data
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Questions?
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Strategy for DL troubleshooting

Tune hyper-  
parameters

Implement  
& debugStart simple Evaluate

Improve  
model/data

Meets re-  
quirements
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Hyperparameter optimization

Model & optimizer choices?
Network: ResNet 

- How many layers?

- Weight initialization?

- Kernel size?

- Etc


Optimizer: Adam 
- Batch size?


- Learning rate?

- beta1, beta2, epsilon?


Regularization 
- ….

0 (no pedestrian) 1 (yes pedestrian) 

Goal: 99% classification accuracy

Running example
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Which hyper-parameters to tune?

Choosing hyper-parameters 

• More sensitive to some than others

• Depends on choice of model

• Rules of thumb (only) to the right

• Sensitivity is relative to default values!  

(e.g., if you are using all-zeros weight  
initialization or vanilla SGD, changing to the  
defaults will make a big difference)

Hyperparameter Approximate sensitivity
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Learning rate	 High
Learning rate schedule	 High

Optimizer choice	 Low
Other optimizer params  

(e.g., Adam beta1) Low

Batch size	 Low
Weight initialization	 Medium

Loss function	 High
Model depth	 Medium

Layer size	 High
Layer params  

(e.g., kernel size) Medium

Weight of regularization	 Medium
Nonlinearity	 Low
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Method 1: manual hyperparam optimization

How it works 

• Understand the algorithm

• E.g., higher learning rate means faster  

less stable training

• Train & evaluate model

• Guess a better hyperparam value & re-  

evaluate

• Can be combined with other methods  (e.g., 

manually select parameter ranges to  
optimizer over)

Advantages 

• For a skilled practitioner, may require least  
computation to get good result

Disadvantages 

• Requires detailed understanding of the  
algorithm


• Time-consuming
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Method 2: grid search
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

How it works

Disadvantages 

• Not very efficient: need to train on all  
cross-combos of hyper-parameters


• May require prior knowledge about  
parameters to get

good results


Hyperparameter 2 (e.g., learning rate)
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• Super simple to implement

• Can produce good results

Advantages
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Method 3: random search
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

How it works

Disadvantages 

• Not very interpretable

• May require prior knowledge about  

parameters to get

good results


Hyperparameter 2 (e.g., learning rate)

Troubleshooting - tune 127

Advantages

• Easy to implement

• Often produces better results than grid  

search
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Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages
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Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

Best performers
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Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages
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Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

Advantages

Troubleshooting - tune 131



Full Stack Deep Learning

Method 4: coarse-to-fine
H

yp
er

pa
ra

m
et

er
 1

 (e
.g

., 
ba

tc
h 

si
ze

)

Hyperparameter 2 (e.g., learning rate)

How it works

Disadvantages

• Can narrow in on very high performing  
hyperparameters


• Most used method in practice

• Somewhat manual process

Advantages

etc.

Troubleshooting - tune 132



Full Stack Deep Learning

Summary of how to optimize hyperparams
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• Coarse-to-fine random searches


• Consider Bayesian hyper-parameter optimization solutions  
as your codebase matures
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Questions?
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Conclusion
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• DL debugging is hard due to many  
competing sources of error 

• To train bug-free DL models, we treat  
building our model as an iterative process 

• The following steps can make the process  
easier and catch errors as early as possible
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How to build bug-free DL models

Tune hyp-  
eparams

Implement  
& debug

Start  
simple

Evaluate

Improve  
model/data

• Choose the simplest model & data possible  
(e.g., LeNet on a subset of your data)
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• Once model runs, overfit a single batch &  
reproduce a known result

• Apply the bias-variance decomposition to  
decide what to do next

• Use coarse-to-fine random searches

• Make your model bigger if you underfit; add  
data or regularize if you overfit
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Where to go to learn more
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• Andrew Ng’s book Machine Learning Yearning (http://  
www.mlyearning.org/)


• The following Twitter thread:  https://twitter.com/karpathy/
status/1013244313327681536


• This blog post:  https://pcc.cs.byu.edu/2017/10/02/
practical-advice-for-  building-deep-neural-networks/

http://www.mlyearning.org/)
http://www.mlyearning.org/)
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Thank you!
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